Advertisements
Advertisements
प्रश्न
The trigonometric equation tan–1x = 3tan–1 a has solution for ______.
विकल्प
`|a| ≤ 1/sqrt(3)`
`|a| > 1/sqrt(3)`
`|a| < 1/sqrt(3)`
all real value of a.
उत्तर
The trigonometric equation tan–1x = 3tan–1a has solution for `underlinebb(|a| < 1/sqrt(3))`.
Explanation:
To solve the equation tan–1(x) = 3tan–1(a), we use the tangent function properties and transformations.
Let θ = tan–1(a).
Then:
x = tan(3θ)
Using the triple-angle formula for tangent:
tan(3θ) = `(3tan(θ) - tan^3(θ))/(1 - 3tan^3(θ))`
Since tan(θ) = a, substituting a in gives us:
x = `(3a - a^3)/(1 - 3a^2)`
For the function tan−1(x) = 3tan−1(a) to have a solution, the argument of tan (which is 3θ) must be within the range of the tan function, which is `(-π/2, π/2)`.
Therefore, 3θ must also be `(-π/2, π/2)`.
Given that θ = tan−1(a) is within `(-π/2, π/2)`, the condition for 3θ to remain in this interval is:
`-π/6 < θ < π/6`
This translates to:
`-π/6 < tan^-1(a) < π/6`
Taking the tangent of the bounds:
`-1/sqrt(3) < a < 1/sqrt(3)`
Thus, the condition for a is:
`|a| < 1/sqrt(3)`
APPEARS IN
संबंधित प्रश्न
Check the injectivity and surjectivity of the following function:
f: N → N given by f(x) = x3
Show that the Signum Function f: R → R, given by `f(x) = {(1, if x > 0), (0, if x = 0), (-1, if x < 0):}` is neither one-one nor onto
Let f: N → N be defined by f(n) = `{((n+1)/2, ",if n is odd"),(n/2,",n is even"):}` for all n ∈ N.
State whether the function f is bijective. Justify your answer.
Let A = R − {3} and B = R − {1}. Consider the function f: A → B defined by `f(x) = ((x- 2)/(x -3))`. Is f one-one and onto? Justify your answer.
Let A = {−1, 0, 1} and f = {(x, x2) : x ∈ A}. Show that f : A → A is neither one-one nor onto.
Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = sin2x + cos2x
Let
f (x) =`{ (1 + x, 0≤ x ≤ 2) , (3 -x , 2 < x ≤ 3):}`
Find fof.
Let f : R `{- 4/3} `- 43 →">→ R be a function defined as f(x) = `(4x)/(3x +4)` . Show that f : R - `{-4/3}`→ Rang (f) is one-one and onto. Hence, find f -1.
If f : A → A, g : A → A are two bijections, then prove that fog is an injection ?
Which of the following graphs represents a one-one function?
Let f : R − {−1} → R − {1} be given by\[f\left( x \right) = \frac{x}{x + 1} . \text{Write } f^{- 1} \left( x \right)\]
Let f, g : R → R be defined by f(x) = 2x + l and g(x) = x2−2 for all x
∈ R, respectively. Then, find gof. [NCERT EXEMPLAR]
Which of the following functions from
to itself are bijections?
Let
The function \[f : R \to R\] defined by
\[f\left( x \right) = 6^x + 6^{|x|}\] is
Let
\[A = \left\{ x \in R : x \leq 1 \right\} and f : A \to A\] be defined as
\[f\left( x \right) = x \left( 2 - x \right)\] Then,
\[f^{- 1} \left( x \right)\] is
The distinct linear functions that map [−1, 1] onto [0, 2] are
Mark the correct alternative in the following question:
Let f : R \[-\] \[\left\{ \frac{3}{5} \right\}\] \[\to\] R be defined by f(x) = \[\frac{3x + 2}{5x - 3}\] Then,
Let f: R → R be the function defined by f(x) = 4x – 3 ∀ x ∈ R. Then write f–1
If A = {a, b, c, d} and f = {a, b), (b, d), (c, a), (d, c)}, show that f is one-one from A onto A. Find f–1
For sets A, B and C, let f: A → B, g: B → C be functions such that g o f is injective. Then both f and g are injective functions.
Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:
h(x) = x|x|
The smallest integer function f(x) = [x] is ____________.
The function f : R → R defined by f(x) = 3 – 4x is ____________.
An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.
Ravi decides to explore these sets for various types of relations and functions.
- Let R: B → G be defined by R = { (b1,g1), (b2,g2),(b3,g1)}, then R is ____________.
An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.
Ravi decides to explore these sets for various types of relations and functions.
- Ravi wants to find the number of injective functions from B to G. How many numbers of injective functions are possible?
Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.
Answer the following questions using the above information.
- The function f: Z → Z defined by f(x) = x2 is ____________.