हिंदी

Let F : R → R F ( X ) = X 2 − 8 X 2 + 2 Then, F is (A) One-one but Not onto (B) One-one and onto (C) onto but Not One-one (D) Neither One-one Nor onto - Mathematics

Advertisements
Advertisements

प्रश्न

Let

\[f : R \to R\]
\[f\left( x \right) = \frac{x^2 - 8}{x^2 + 2}\]
Then,  f is

विकल्प

  • one-one but not onto

  • one-one and onto

  • onto but not one-one

  • neither one-one nor onto

MCQ

उत्तर

Injectivity:
Let x and y be two elements in the domain (R), such that

\[f\left( x \right) = f\left( y \right)\] 
\[ \Rightarrow \frac{x^2 - 8}{x^2 + 2} = \frac{y^2 - 8}{y^2 + 2}\] 
\[ \Rightarrow \left( x^2 - 8 \right)\left( y^2 + 2 \right) = \left( x^2 + 2 \right)\left( y^2 - 8 \right)\] 
\[ \Rightarrow x^2 y^2 + 2 x^2 - 8 y^2 - 16 = x^2 y^2 - 8 x^2 + 2 y^2 - 16\] 
\[ \Rightarrow 10 x^2 = 10 y^2 \] 
\[ \Rightarrow x^2 = y^2 \] 
\[ \Rightarrow x = \pm y \]

So, f is not one-one .

Surjectivity:

\[f\left( - 1 \right) = \frac{\left( - 1 \right)^2 - 8}{\left( - 1 \right)^2 + 2} = \frac{1 - 8}{1 + 2} = \frac{- 7}{3}\] 

\[ \text{ and} f\left( 1 \right) = \frac{\left( 1 \right)^2 - 8}{\left( 1 \right)^2 + 2} = \frac{1 - 8}{1 + 2} = \frac{- 7}{3}\]
\[\Rightarrow\] f is not onto.
The correct answer is (d).
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.6 [पृष्ठ ७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.6 | Q 23 | पृष्ठ ७७

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Classify the following function as injection, surjection or bijection :

 f : R → R, defined by f(x) = sinx


Classify the following function as injection, surjection or bijection :

f : Q → Q, defined by f(x) = x3 + 1


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = `x/(x^2 +1)`


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = x2 + 8 and g(x) = 3x3 + 1 .


Let A = {1, 2, 3, 4}; B = {3, 5, 7, 9}; C = {7, 23, 47, 79} and f : A → Bg : B → C be defined as f(x) = 2x + 1 and g(x) = x2 − 2. Express (gof)−1 and f−1 og−1 as the sets of ordered pairs and verify that (gof)−1 = f−1 og−1.


If A = {1, 2, 3} and B = {ab}, write the total number of functions from A to B.


If A = {abc} and B = {−2, −1, 0, 1, 2}, write the total number of one-one functions from A to B.


If f : R → R is given by f(x) = x3, write f−1 (1).


If f : R → R is defined by f(x) = x2, find f−1 (−25).


If f : R → Rg : R → are given by f(x) = (x + 1)2 and g(x) = x2 + 1, then write the value of fog (−3).


Let `f : R - {- 3/5}` → R be a function defined as `f  (x) = (2x)/(5x +3).` 

f-1 : Range of f → `R -{-3/5}`.


Let f be an invertible real function. Write ( f-1  of ) (1) + ( f-1  of ) (2) +..... +( f-1 of ) (100 )


Write the domain of the real function

`f (x) = sqrt([x] - x) .`


If f(x) = x + 7 and g(x) = x − 7, x ∈ R, write fog (7).


What is the range of the function

`f (x) = ([x - 1])/(x -1) ?`


If a function g = {(1, 1), (2, 3), (3, 5), (4, 7)} is described by g(x) = \[\alpha x + \beta\]  then find the values of \[\alpha\] and \[ \beta\] . [NCERT EXEMPLAR]


Let

f : R → R be given by

\[f\left( x \right) = \left[ x^2 \right] + \left[ x + 1 \right] - 3\]

where [x] denotes the greatest integer less than or equal to x. Then, f(x) is
 


(d) one-one and onto


A function f  from the set of natural numbers to integers defined by

`{([n-1]/2," when  n is  odd"   is ),(-n/2,when  n  is  even ) :}`

 

 


Let f be an injective map with domain {xyz} and range {1, 2, 3}, such that exactly one of the following statements is correct and the remaining are false.

\[f\left( x \right) = 1, f\left( y \right) \neq 1, f\left( z \right) \neq 2 .\]

The value of

\[f^{- 1} \left( 1 \right)\] is 

 


The function

\[f : R \to R, f\left( x \right) = x^2\]
 

Which of the following functions from

\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\}\]

 


\[f : Z \to Z\]  be given by

 ` f (x) = {(x/2, ", if  x is even" ) ,(0 , ", if  x  is  odd "):}`

Then,  f is


Let  \[f\left( x \right) = \frac{1}{1 - x} . \text{Then}, \left\{ f o \left( fof \right) \right\} \left( x \right)\]

 


Let N be the set of natural numbers and the function f: N → N be defined by f(n) = 2n + 3 ∀ n ∈ N. Then f is ______.


Set A has 3 elements and the set B has 4 elements. Then the number of injective mappings that can be defined from A to B is ______.


For sets A, B and C, let f: A → B, g: B → C be functions such that g o f is injective. Then both f and g are injective functions.


Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(x, y): x is a person, y is the mother of x}


Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(a, b): a is a person, b is an ancestor of a}


Let A = {1, 2, 3, ...n} and B = {a, b}. Then the number of surjections from A into B is ______.


Let f: R – `{3/5}` → R be defined by f(x) = `(3x + 2)/(5x - 3)`. Then ______.


If f(x) = (4 – (x – 7)3}, then f–1(x) = ______.


Let A = {0, 1} and N be the set of natural numbers. Then the mapping f: N → A defined by f(2n – 1) = 0, f(2n) = 1, ∀ n ∈ N, is onto.


If `f : R -> R^+  U {0}` be defined by `f(x) = x^2, x ∈ R`. The mapping is


'If 'f' is a linear function satisfying f[x + f(x)] = x + f(x), then f(5) can be equal to:


Consider a function f: `[0, pi/2] ->` R, given by f(x) = sinx and `g[0, pi/2] ->` R given by g(x) = cosx then f and g are


`x^(log_5x) > 5` implies ______.


Let f(n) = `[1/3 + (3n)/100]n`, where [n] denotes the greatest integer less than or equal to n. Then `sum_(n = 1)^56f(n)` is equal to ______.


The graph of the function y = f(x) is symmetrical about the line x = 2, then ______.


Let A = {1, 2, 3, ..., 10} and f : A `rightarrow` A be defined as

f(k) = `{{:(k + 1, if k  "is odd"),(     k, if k  "is even"):}`.

Then the number of possible functions g : A `rightarrow` A such that gof = f is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×