हिंदी

Let F : R − { N } → R F ( X ) = X − M X − N , W H E R E M ≠ N . (A) F is One-one onto (B) F is One-one into (C) F is Many One onto (D) F is Many One into - Mathematics

Advertisements
Advertisements

प्रश्न

Let

\[f : R - \left\{ n \right\} \to R\]

\[f\left( x \right) = \frac{x - m}{x - n}, \text{where} \ m \neq n .\] Then,
 

विकल्प

  •  f is one-one onto

  •  f is one-one into

  •  f is many one onto

  • f is many one into

MCQ

उत्तर

Injectivity:
Let x and be two elements in the domain R-{n}, such that

\[f\left( x \right) = f\left( y \right)\] 
\[ \Rightarrow \frac{x - m}{x - n} = \frac{y - m}{y - n}\] 
\[ \Rightarrow \left( x - m \right)\left( y - n \right) = \left( x - n \right)\left( y - m \right)\] 
\[ \Rightarrow xy - nx - my + mn = xy - mx - ny + mn\] 
\[ \Rightarrow \left( m - n \right)x = \left( m - n \right)y\] 
\[ \Rightarrow x = y\]

So, f is one-one.

Surjectivity:
Let y be an element in the co domain R, such that

\[f\left( x \right) = y\] 
\[ \Rightarrow \frac{x - m}{x - n} = y\] 
\[ \Rightarrow x - m = xy - ny\] 
\[ \Rightarrow ny - m = xy - x\] 
\[ \Rightarrow ny - m = x\left( y - 1 \right)\] 
\[ \Rightarrow x = \frac{ny - m}{y - 1}, \text{which is not defined for } y=1\] 
\[So, 1 \in R\left( co domain \right)\text{has no pre image in }R-\left\{ n \right\}\]

\[\Rightarrow\]  is not onto

Thus, the answer is (b) .

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.6 [पृष्ठ ७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.6 | Q 22 | पृष्ठ ७७

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Let fR → be defined as f(x) = 10x + 7. Find the function gR → R such that g o f = f o = 1R.


Show that function f: R `rightarrow` {x ∈ R : −1 < x < 1} defined by f(x) = `x/(1 + |x|)`, x ∈ R is one-one and onto function.


If the function `f(x) = sqrt(2x - 3)` is invertible then find its inverse. Hence prove that `(fof^(-1))(x) = x`


Prove that the function f : N → N, defined by f(x) = x2 + x + 1, is one-one but not onto


Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x2


Classify the following function as injection, surjection or bijection :

f : Z → Z, defined by f(x) = x2 + x


Let A = [-1, 1]. Then, discuss whether the following functions from A to itself is one-one, onto or bijective : h(x) = x2 


Show that the exponential function f : R → R, given by f(x) = ex, is one-one but not onto. What happens if the co-domain is replaced by`R0^+` (set of all positive real numbers)?


If A = {1, 2, 3}, show that a onto function f : A → A must be one-one.


Show that f : R→ R, given by f(x) = x — [x], is neither one-one nor onto.


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = 2x + x2 and  g(x) = x3


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = x and g(x) = |x| .


Find fog and gof  if : f(x)= x + 1, g (x) = 2x + 3 .


Let  f  be any real function and let g be a function given by g(x) = 2x. Prove that gof = f + f.


if f (x) = `sqrt (x +3) and  g (x) = x ^2 + 1` be two real functions, then find fog and gof.


If f : A → Ag : A → A are two bijections, then prove that fog is a surjection ?


Which one of the following graphs represents a function?


Let f : R − {−1} → R − {1} be given by\[f\left( x \right) = \frac{x}{x + 1} . \text{Write } f^{- 1} \left( x \right)\]


Write the domain of the real function

`f (x) = 1/(sqrt([x] - x)`.


What is the range of the function

`f (x) = ([x - 1])/(x -1) ?`


Let fg : R → R be defined by f(x) = 2x + l and g(x) = x2−2 for all x

∈ R, respectively. Then, find gof.  [NCERT EXEMPLAR]


The function \[f : [0, \infty ) \to \text {R given by } f\left( x \right) = \frac{x}{x + 1} is\]

 

 


The function

\[f : R \to R, f\left( x \right) = x^2\]
 

Let A = R − (2) and B = R − (1). If f: A ⟶ B is a function defined by`"f(x)"=("x"-1)/("x"-2),` how that f is one-one and onto. Hence, find f−1


Let f, g: R → R be two functions defined as f(x) = |x| + x and g(x) = x – x ∀ x ∈ R. Then, find f o g and g o f


Let f: R → R be defined by f(x) = x2 + 1. Then, pre-images of 17 and – 3, respectively, are ______.


Let the function f: R → R be defined by f(x) = cosx, ∀ x ∈ R. Show that f is neither one-one nor onto


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

k = {(1,4), (2, 5)}


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

g(x) = |x|


Let f: `[2, oo)` → R be the function defined by f(x) = x2 – 4x + 5, then the range of f is ______.


Let A = {0, 1} and N be the set of natural numbers. Then the mapping f: N → A defined by f(2n – 1) = 0, f(2n) = 1, ∀ n ∈ N, is onto.


Let f : R `->` R be a function defined by f(x) = x3 + 4, then f is ______.


Range of `"f"("x") = sqrt((1 - "cos x") sqrt ((1 - "cos x")sqrt ((1 - "cos x")....infty))`


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Based on the given information, f is best defined as:


Let f: R→R be a continuous function such that f(x) + f(x + 1) = 2, for all x ∈ R. If I1 = `int_0^8f(x)dx` and I2 = `int_(-1)^3f(x)dx`, then the value of I1 + 2I2 is equal to ______.


`x^(log_5x) > 5` implies ______.


Consider a set containing function A= {cos–1cosx, sin(sin–1x), sinx((sinx)2 – 1), etan{x}, `e^(|cosx| + |sinx|)`, sin(tan(cosx)), sin(tanx)}. B, C, D, are subsets of A, such that B contains periodic functions, C contains even functions, D contains odd functions then the value of n(B ∩ C) + n(B ∩ D) is ______ where {.} denotes the fractional part of functions)


If f: [0, 1]→[0, 1] is defined by f(x) = `(x + 1)/4` and `d/(dx) underbrace(((fofof......of)(x)))_("n"  "times")""|_(x = 1/2) = 1/"m"^"n"`, m ∈ N, then the value of 'm' is ______.


Let f(x) = ax (a > 0) be written as f(x) = f1(x) + f2(x), where f1(x) is an even function and f2(x) is an odd function. Then f1(x + y) + f1(x – y) equals ______.


Which one of the following graphs is a function of x?

Graph A Graph B

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×