हिंदी

The Function F : R → R , F ( X ) = X 2(A) Injective but Not Surjective (B) Surjective but Not Injective (C) Injective as Well as Surjective (D) Neither Injective Nor Surjective - Mathematics

Advertisements
Advertisements

प्रश्न

The function

\[f : R \to R, f\left( x \right) = x^2\]
 

विकल्प

  • injective but not surjective

  • surjective but not injective

  • injective as well as surjective

  • neither injective nor surjective

MCQ

उत्तर

Injectivity:
Let x and y be any two elements in the domain (R), such that f(x) = f(y). Then,

\[x^2 = y^2 \] 
\[ \Rightarrow x = \pm y\]
So, f is not one-one.
Surjectivity:
\[\text{As} f\left( - 1 \right) = \left( - 1 \right)^2 = 1\] 
\[\text{and} f\left( 1 \right) = 1^2 = 1, \] 
\[f\left( - 1 \right) = f\left( 1 \right)\]
So, both -1 and 1 have the same images.
\[\Rightarrow\] f is not onto.
So, the answer is (d) .
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.6 [पृष्ठ ७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.6 | Q 25 | पृष्ठ ७७

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Let S = {abc} and T = {1, 2, 3}. Find F−1 of the following functions F from S to T, if it exists.

F = {(a, 3), (b, 2), (c, 1)} 


Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x2


Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x3


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = 1 + x2


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = `x/(x^2 +1)`


Show that the exponential function f : R → R, given by f(x) = ex, is one-one but not onto. What happens if the co-domain is replaced by`R0^+` (set of all positive real numbers)?


If A = {1, 2, 3}, show that a one-one function f : A → A must be onto.


Find gof and fog when f : R → R and g : R → R is defined by f(x) = 2x + 3 and  g(x) = x2 + 5 .


Find fog and gof  if : f(x)= x + 1, g (x) = 2x + 3 .


Find fog and gof  if : f(x) = `x^2` + 2 , g (x) = 1 − `1/ (1-x)`.


If f(x) = sin x and g(x) = 2x be two real functions, then describe gof and fog. Are these equal functions?


if f (x) = `sqrt (x +3) and  g (x) = x ^2 + 1` be two real functions, then find fog and gof.


Let f : R `{- 4/3} `- 43 →">→ R be a function defined as f(x) = `(4x)/(3x +4)` . Show that f : R - `{-4/3}`→ Rang (f) is one-one and onto. Hence, find f -1.


Let f : [−1, ∞) → [−1, ∞) be given by f(x) = (x + 1)2 − 1, x ≥ −1. Show that f is invertible. Also, find the set S = {x : f(x) = f−1 (x)}.


If A = {1, 2, 3, 4} and B = {abcd}, define any four bijections from A to B. Also give their inverse functions.


 If f : R → R be defined by f(x) = x4, write f−1 (1).

Let A = {x ∈ R : −4 ≤ x ≤ 4 and x ≠ 0} and f : A → R be defined by \[f\left( x \right) = \frac{\left| x \right|}{x}\]Write the range of f.


Let f : R − {−1} → R − {1} be given by\[f\left( x \right) = \frac{x}{x + 1} . \text{Write } f^{- 1} \left( x \right)\]


Write the domain of the real function

`f (x) = sqrt([x] - x) .`


If f : R → R is defined by f(x) = 3x + 2, find f (f (x)).


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. State whether f is one-one or not.


Let 

\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = B\] Then, the mapping\[f : A \to \text{B given by} f\left( x \right) = x\left| x \right|\] is 

 


If the function\[f : R \to \text{A given by} f\left( x \right) = \frac{x^2}{x^2 + 1}\] is a surjection, then A =

 

 


The function

\[f : R \to R\] defined by\[f\left( x \right) = \left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)\]

(a) one-one but not onto
(b) onto but not one-one
(c) both one and onto
(d) neither one-one nor onto


Let

\[f : R - \left\{ n \right\} \to R\]

\[f\left( x \right) = \frac{x - m}{x - n}, \text{where} \ m \neq n .\] Then,
 

The inverse of the function

\[f : R \to \left\{ x \in R : x < 1 \right\}\] given by

\[f\left( x \right) = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] is 

 


Mark the correct alternative in the following question:
Let A = {1, 2, ... , n} and B = {a, b}. Then the number of subjections from A into B is


Mark the correct alternative in the following question:

If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is


Let A = R − (2) and B = R − (1). If f: A ⟶ B is a function defined by`"f(x)"=("x"-1)/("x"-2),` how that f is one-one and onto. Hence, find f−1


Let the function f: R → R be defined by f(x) = cosx, ∀ x ∈ R. Show that f is neither one-one nor onto


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

f(x) = `x/2`


The function f : R → R given by f(x) = x3 – 1 is ____________.


Let f: R → R defined by f(x) = 3x. Choose the correct answer


A function f: x → y is/are called onto (or surjective) if x under f.


`x^(log_5x) > 5` implies ______.


Let f: R→R be a polynomial function satisfying f(x + y) = f(x) + f(y) + 3xy(x + y) –1 ∀ x, y ∈ R and f'(0) = 1, then `lim_(x→∞)(f(2x))/(f(x)` is equal to ______.


The domain of function is f(x) = `sqrt(-log_0.3(x - 1))/sqrt(x^2 + 2x + 8)` is ______.


If A = {x ∈ R: |x – 2| > 1}, B = `{x ∈ R : sqrt(x^2 - 3) > 1}`, C = {x ∈ R : |x – 4| ≥ 2} and Z is the set of all integers, then the number of subsets of the set (A ∩ B ∩ C) C ∩ Z is ______.


ASSERTION (A): The relation f : {1, 2, 3, 4} `rightarrow` {x, y, z, p} defined by f = {(1, x), (2, y), (3, z)} is a bijective function.

REASON (R): The function f : {1, 2, 3} `rightarrow` {x, y, z, p} such that f = {(1, x), (2, y), (3, z)} is one-one.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×