हिंदी

Show That F : R→ R, Given By F(X) = X — [X], is Neither One-one Nor Onto. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that f : R→ R, given by f(x) = x — [x], is neither one-one nor onto.

योग

उत्तर

We have, f(x) = x — [x]
Injection test:
f(x) = 0 for all x ∈  Z
So, f is a many-one function.

Surjection test:

Range (f) = [0, 1) ≠ R.

So, f is an into function.

Therefore, f is neither one-one nor onto.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.1 [पृष्ठ ३२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.1 | Q 22 | पृष्ठ ३२

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Show that the modulus function f: → R given by f(x) = |x| is neither one-one nor onto, where |x| is x, if x is positive or 0 and |x|  is − x if x is negative.


Give examples of two functions fN → Z and gZ → Z such that g o f is injective but gis not injective.

(Hint: Consider f(x) = x and g(x) =|x|)


Give an example of a function which is one-one but not onto ?


Give an example of a function which is neither one-one nor onto ?


Classify the following function as injection, surjection or bijection :

f : Z → Z, defined by f(x) = x2 + x


Classify the following function as injection, surjection or bijection :

 f : R → R, defined by f(x) = sinx


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = 3 − 4x


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = 1 + x2


Show that the logarithmic function  f : R0+ → R   given  by f (x)  loga x ,a> 0   is   a  bijection.


Find the number of all onto functions from the set A = {1, 2, 3, ..., n} to itself.


Give examples of two one-one functions f1 and f2 from R to R, such that f1 + f2 : R → R. defined by (f1 + f2) (x) = f1 (x) + f2 (x) is not one-one.


If f : A → B and g : B → C are onto functions, show that gof is a onto function.


Find fog and gof  if : f(x)= x + 1, g (x) = 2x + 3 .


Let fgh be real functions given by f(x) = sin xg (x) = 2x and h (x) = cos x. Prove that fog = go (fh).


Let  f  be any real function and let g be a function given by g(x) = 2x. Prove that gof = f + f.


Let f be a real function given by f (x)=`sqrt (x-2)`
Find each of the following:

(i) fof
(ii) fofof
(iii) (fofof) (38)
(iv) f2

Also, show that fof ≠ `f^2` .


Consider f : R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.


If f : A → Ag : A → A are two bijections, then prove that fog is a surjection ?


If f : C → C is defined by f(x) = x4, write f−1 (1).


If f : R → R is defined by f(x) = 10 x − 7, then write f−1 (x).


Let A = {x ∈ R : −4 ≤ x ≤ 4 and x ≠ 0} and f : A → R be defined by \[f\left( x \right) = \frac{\left| x \right|}{x}\]Write the range of f.


Let

\[f : R \to R\]
\[f\left( x \right) = \frac{x^2 - 8}{x^2 + 2}\]
Then,  f is


\[f : R \to R\] is defined by

\[f\left( x \right) = \frac{e^{x^2} - e^{- x^2}}{e^{x^2 + e^{- x^2}}} is\]

 


If \[f : R \to R is given by f\left( x \right) = 3x - 5, then f^{- 1} \left( x \right)\] 

 


Mark the correct alternative in the following question:

Let f : → R be given by f(x) = tanx. Then, f-1(1) is

 

 


Let N be the set of natural numbers and the function f: N → N be defined by f(n) = 2n + 3 ∀ n ∈ N. Then f is ______.


Let A = R – {3}, B = R – {1}. Let f: A → B be defined by f(x) = `(x - 2)/(x - 3)` ∀ x ∈ A . Then show that f is bijective


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

h(x) = x|x|


The function f : A → B defined by f(x) = 4x + 7, x ∈ R is ____________.


The smallest integer function f(x) = [x] is ____________.


The number of bijective functions from set A to itself when A contains 106 elements is ____________.


Let X = {-1, 0, 1}, Y = {0, 2} and a function f : X → Y defiend by y = 2x4, is ____________.


Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let f: {1,2,3,....} → {1,4,9,....} be defined by f(x) = x2 is ____________.

Let f: R → R defined by f(x) = x4. Choose the correct answer


If `f : R -> R^+  U {0}` be defined by `f(x) = x^2, x ∈ R`. The mapping is


Prove that the function f is surjective, where f: N → N such that `f(n) = {{:((n + 1)/2",", if "n is odd"),(n/2",", if  "n is even"):}` Is the function injective? Justify your answer.


Difference between the greatest and least value of f(x) = `(1 + (cos^-1x)/π)^2 - (1 + (sin^-1x)/π)^2` is ______.


Let f: R→R be a polynomial function satisfying f(x + y) = f(x) + f(y) + 3xy(x + y) –1 ∀ x, y ∈ R and f'(0) = 1, then `lim_(x→∞)(f(2x))/(f(x)` is equal to ______.


Find the domain of sin–1 (x2 – 4).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×