हिंदी

If F : R → R is Defined by F(X) = X2, Find F−1 (−25). - Mathematics

Advertisements
Advertisements

प्रश्न

If f : R → R is defined by f(x) = x2, find f−1 (−25).

उत्तर

\[Let f^{- 1} \left( - 25 \right) = x\] 

\[ \Rightarrow f\left( x \right) = - 25\]
\[ \Rightarrow x^2 = - 25\]
\[\text{We cannot find x } \in R,\text{such that}  x^2 = - 25 \left( \text{ as x}^2 \geq0 \text{ for all } x \in R \right)\]
\[So, f^{- 1} \left( - 25 \right) = \phi\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.5 [पृष्ठ ७३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.5 | Q 13 | पृष्ठ ७३

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Classify the following function as injection, surjection or bijection :  f : Z → Z given by f(x) = x2


Classify the following function as injection, surjection or bijection :  f : Z → Z given by f(x) = x3


Let A = [-1, 1]. Then, discuss whether the following function from A to itself is one-one, onto or bijective : g(x) = |x|  


If f : A → B and g : B → C are onto functions, show that gof is a onto function.


Find fog and gof  if : f (x) = x2 g(x) = cos x .


Find fog and gof  if : f(x) = sin−1 x, g(x) = x2


Find fog and gof  if : f(x) = `x^2` + 2 , g (x) = 1 − `1/ (1-x)`.


Let  f  be any real function and let g be a function given by g(x) = 2x. Prove that gof = f + f.


Let

f (x) =`{ (1 + x, 0≤ x ≤ 2) , (3 -x , 2 < x ≤ 3):}`

Find fof.


A function f : R → R is defined as f(x) = x3 + 4. Is it a bijection or not? In case it is a bijection, find f−1 (3).


If f : Q → Qg : Q → Q are two functions defined by f(x) = 2 x and g(x) = x + 2, show that f and g are bijective maps. Verify that (gof)−1 = f−1 og −1.


Let A = R - {3} and B = R - {1}. Consider the function f : A → B defined by f(x) = `(x-2)/(x-3).`Show that f is one-one and onto and hence find f-1.

                    [CBSE 2012, 2014]


Let f : R − {−1} → R − {1} be given by\[f\left( x \right) = \frac{x}{x + 1} . \text{Write } f^{- 1} \left( x \right)\]


Let `f : R - {- 3/5}` → R be a function defined as `f  (x) = (2x)/(5x +3).` 

f-1 : Range of f → `R -{-3/5}`.


Write the domain of the real function

`f (x) = 1/(sqrt([x] - x)`.


If f : R → R is defined by f(x) = 3x + 2, find f (f (x)).


Which of the following functions form Z to itself are bijections?

 

 

 
 

If the function\[f : R \to \text{A given by} f\left( x \right) = \frac{x^2}{x^2 + 1}\] is a surjection, then A =

 

 


A function f from the set of natural numbers to the set of integers defined by

\[f\left( n \right)\begin{cases}\frac{n - 1}{2}, & \text{when n is odd} \\ - \frac{n}{2}, & \text{when n is even}\end{cases}\]

 


Which of the following functions from

\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\}\]

 


Let

\[f : [2, \infty ) \to X\] be defined by

\[f\left( x \right) = 4x - x^2\] Then, f is invertible if X =

 


Mark the correct alternative in the following question:
Let f :  \[-\] \[\left\{ \frac{3}{5} \right\}\] \[\to\]  R be defined by f(x) = \[\frac{3x + 2}{5x - 3}\] Then,

 


Let A = ℝ − {3}, B = ℝ − {1}. Let f : A → B be defined by \[f\left( x \right) = \frac{x - 2}{x - 3}, \forall x \in A\] Show that f is bijective. Also, find
(i) x, if f−1(x) = 4
(ii) f−1(7)


Which function is used to check whether a character is alphanumeric or not?


Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R. Then, show that f is one-one.


Let R be the set of real numbers and f: R → R be the function defined by f(x) = 4x + 5. Show that f is invertible and find f–1.


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

f = {(1, 4), (1, 5), (2, 4), (3, 5)}


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

k(x) = x2 


Let f: `[2, oo)` → R be the function defined by f(x) = x2 – 4x + 5, then the range of f is ______.


Let f : R → R be defind by f(x) = `1/"x"  AA  "x" in "R".` Then f is ____________.


Let f : R → R be a function defined by f(x) `= ("e"^abs"x" - "e"^-"x")/("e"^"x" + "e"^-"x")` then f(x) is


Let g(x) = x2 – 4x – 5, then ____________.


If N be the set of all-natural numbers, consider f: N → N such that f(x) = 2x, ∀ x ∈ N, then f is ____________.


Range of `"f"("x") = sqrt((1 - "cos x") sqrt ((1 - "cos x")sqrt ((1 - "cos x")....infty))`


Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let f: R → R be defined by f(x) = x2 is:

If log102 = 0.3010.log103 = 0.4771 then the number of ciphers after decimal before a significant figure comes in `(5/3)^-100` is ______.


Let a function `f: N rightarrow N` be defined by

f(n) = `{:[(2n",", n = 2","  4","  6","  8","......),(n - 1",", n = 3","  7","  11","  15","......),((n + 1)/2",", n = 1","  5","  9","  13","......):}`

then f is ______.


Let S = {1, 2, 3, 4, 5, 6, 7}. Then the number of possible functions f: S `rightarrow` S such that f(m.n) = f(m).f(n) for every m, n ∈ S and m.n ∈ S is equal to ______.


ASSERTION (A): The relation f : {1, 2, 3, 4} `rightarrow` {x, y, z, p} defined by f = {(1, x), (2, y), (3, z)} is a bijective function.

REASON (R): The function f : {1, 2, 3} `rightarrow` {x, y, z, p} such that f = {(1, x), (2, y), (3, z)} is one-one.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×