हिंदी

Find Fog And Gof If : F(X) = Sin−1 X, G(X) = X2 - Mathematics

Advertisements
Advertisements

प्रश्न

Find fog and gof  if : f(x) = sin−1 x, g(x) = x2

उत्तर

f (x) = sin −1 x, g(x) = x2

f : [−1,1]→ `[(-π)/2 ,π/2]`  ; g : R → [0, ∞) 

Computing fog:

Clearly, the range of g is not a subset of the domain of f.

Domain (fog) = {x: x ∈ domain of g and g (x) ∈ domain of f }

Domain (fog)={ x: x ∈ R and x2 ∈ [−1,1] }

Domain (fog)={ x : x ∈ R and x ∈ [−1,1] }

Domain of (fog)= [−1,1]

fog : [−1,1] → R 

(fog) (x) = f (g (x))

= f (x2)

= sin−1 ( x2)

Computing gof:

Clearly, the range of f is a subset of the domain of g.

fog : [−1,1] → R

(gof) (x) = g (f (x))

= g (sin−1 x )

= ( sin−1 x)2

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.3 [पृष्ठ ५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.3 | Q 1.5 | पृष्ठ ५४

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Let f: N → N be defined by f(n) = `{((n+1)/2, ",if n is odd"),(n/2,",n is even"):}` for all n ∈ N.

State whether the function f is bijective. Justify your answer.


Show that function f: R `rightarrow` {x ∈ R : −1 < x < 1} defined by f(x) = `x/(1 + |x|)`, x ∈ R is one-one and onto function.


Give examples of two functions fN → Z and gZ → Z such that g o f is injective but gis not injective.

(Hint: Consider f(x) = x and g(x) =|x|)


Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x2


Classify the following function as injection, surjection or bijection :

 f : Z → Z, defined by f(x) = x − 5 


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = x3 + 1


Classify the following function as injection, surjection or bijection :

 f : R → R, defined by f(x) = x3 − x


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = `x/(x^2 +1)`


Find the number of all onto functions from the set A = {1, 2, 3, ..., n} to itself.


Show that f : R→ R, given by f(x) = x — [x], is neither one-one nor onto.


Let f : N → N be defined by

`f(n) = { (n+ 1, if n  is  odd),( n-1 , if n  is  even):}`

Show that f is a bijection. 

                      [CBSE 2012, NCERT]


Verify associativity for the following three mappings : f : N → Z0 (the set of non-zero integers), g : Z0 → Q and h : Q → R given by f(x) = 2xg(x) = 1/x and h(x) = ex.


If f : A → B and g : B → C are one-one functions, show that gof is a one-one function.


Let f(x) = x2 + x + 1 and g(x) = sin x. Show that fog ≠ gof.


  ` if  f : (-π/2 , π/2)` → R and g : [−1, 1]→ R be defined as f(x) = tan x and g(x) = `sqrt(1 - x^2)` respectively, describe fog and gof.


 If f, g : R → R be two functions defined as f(x) = |x| + x and g(x) = |x|- x, ∀x∈R" .Then find fog and gof. Hence find fog(–3), fog(5) and gof (–2).


Let C denote the set of all complex numbers. A function f : C → C is defined by f(x) = x3. Write f−1(1).


What is the range of the function

`f (x) = ([x - 1])/(x -1) ?`


Let A = {abcd} and f : A → A be given by f = {( a,b ),( b , d ),( c , a ) , ( d , c )} write `f^-1`. [NCERT EXEMPLAR]


Let

\[A = \left\{ x : - 1 \leq x \leq 1 \right\} \text{and} f : A \to \text{A such that f}\left( x \right) = x|x|\]

 


The function

\[f : R \to R\] defined by\[f\left( x \right) = \left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)\]

(a) one-one but not onto
(b) onto but not one-one
(c) both one and onto
(d) neither one-one nor onto


The  function f : [-1/2, 1/2, 1/2] → [-π /2,π/2], defined by f (x) = `sin^-1` (3x - `4x^3`), is

 


Let

\[f : R \to R\]
\[f\left( x \right) = \frac{x^2 - 8}{x^2 + 2}\]
Then,  f is


Mark the correct alternative in the following question:

Let f : → R be given by f(x) = tanx. Then, f-1(1) is

 

 


The domain of the function f: R → R defined by f(x) = `sqrt(x^2 - 3x + 2)` is ______


If f: R → R is defined by f(x) = x2 – 3x + 2, write f(f (x))


Let C be the set of complex numbers. Prove that the mapping f: C → R given by f(z) = |z|, ∀ z ∈ C, is neither one-one nor onto.


Let A = R – {3}, B = R – {1}. Let f: A → B be defined by f(x) = `(x - 2)/(x - 3)` ∀ x ∈ A . Then show that f is bijective


Using the definition, prove that the function f: A→ B is invertible if and only if f is both one-one and onto


The function f : R → R defined by f(x) = 3 – 4x is ____________.


Let g(x) = x2 – 4x – 5, then ____________.


An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Ravi wants to know among those relations, how many functions can be formed from B to G?

Let f: R → R defined by f(x) = 3x. Choose the correct answer


If f; R → R f(x) = 10x + 3 then f–1(x) is:


`x^(log_5x) > 5` implies ______.


If f: [0, 1]→[0, 1] is defined by f(x) = `(x + 1)/4` and `d/(dx) underbrace(((fofof......of)(x)))_("n"  "times")""|_(x = 1/2) = 1/"m"^"n"`, m ∈ N, then the value of 'm' is ______.


The domain of function is f(x) = `sqrt(-log_0.3(x - 1))/sqrt(x^2 + 2x + 8)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×