Advertisements
Advertisements
प्रश्न
Let
\[A = \left\{ x : - 1 \leq x \leq 1 \right\} \text{and} f : A \to \text{A such that f}\left( x \right) = x|x|\]
विकल्प
a bijection
injective but not surjective
surjective but not injective
neither injective nor surjective
उत्तर
Injectivity:
Let x and y be any two elements in the domain A.
Case-1: Let x and y be two positive numbers, such that\[f\left( x \right) = f\left( y \right)\]
\[ \Rightarrow x\left| x \right| = y\left| y \right|\]
\[ \Rightarrow x\left( x \right) = y\left( y \right)\]
\[ \Rightarrow x^2 = y^2 \]
\[ \Rightarrow x = y\]
\[ \Rightarrow x\left| x \right| = y\left| y \right|\]
\[ \Rightarrow x\left( - x \right) = y\left( - y \right)\]
\[ \Rightarrow - x^2 = - y^2 \]
\[ \Rightarrow x^2 = y^2 \]
\[ \Rightarrow x = y\]
\[ \Rightarrow f\left( x \right) = x\left| x \right| \text{is positive and }f\left( y \right) = y\left| y \right| \text{is negative}\]
\[ \Rightarrow f\left( x \right) \neq f\left( y \right)\]
\[So, x \neq y\]
\[ \Rightarrow f\left( x \right) \neq f\left( y \right)\]
Let y be an element in the co-domain, such that y = f (x)
\[y = f\left( x \right) = x\left| x \right| > 0\]
\[ \Rightarrow x > 0\]
\[ \Rightarrow \left| x \right| = x\]
\[ \Rightarrow f\left( x \right) = y\]
\[ \Rightarrow x\left| x \right| = y\]
\[ \Rightarrow x\left( x \right) = y\]
\[ \Rightarrow x^2 = y\]
\[ \Rightarrow x = \sqrt{y} \in A \left( \text{We do not get}\pm, \text{as } x > 0 \right)\] \[\] \[Case-2: Lety<0.\text{Then},-1\leq y<0\]
\[y = f\left( x \right) = x\left| x \right| < 0\]
\[ \Rightarrow x < 0\]
\[ \Rightarrow \left| x \right| = - x\]
\[ \Rightarrow f\left( x \right) = y\]
\[ \Rightarrow x\left| x \right| = y\]
\[ \Rightarrow x\left( - x \right) = y\]
\[ \Rightarrow - x^2 = y\]
\[ \Rightarrow x^2 = - y\]
\[ \Rightarrow x = - \sqrt{- y} \in A \left( \text{We do not get}\pm, \text{ as } x>0 \right)\]
So, the answer is (a).
APPEARS IN
संबंधित प्रश्न
Let f: N → N be defined by f(n) = `{((n+1)/2, ",if n is odd"),(n/2,",n is even"):}` for all n ∈ N.
State whether the function f is bijective. Justify your answer.
Give examples of two functions f: N → Z and g: Z → Z such that g o f is injective but gis not injective.
(Hint: Consider f(x) = x and g(x) =|x|)
Give an example of a function which is neither one-one nor onto ?
Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = sinx
Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = 5x3 + 4
If A = {1, 2, 3}, show that a onto function f : A → A must be one-one.
Show that if f1 and f2 are one-one maps from R to R, then the product f1 × f2 : R → R defined by (f1 × f2) (x) = f1 (x) f2 (x) need not be one - one.
Let f : N → N be defined by
`f(n) = { (n+ 1, if n is odd),( n-1 , if n is even):}`
Show that f is a bijection.
[CBSE 2012, NCERT]
Let f = {(3, 1), (9, 3), (12, 4)} and g = {(1, 3), (3, 3) (4, 9) (5, 9)}. Show that gof and fog are both defined. Also, find fog and gof.
Let A = {a, b, c}, B = {u v, w} and let f and g be two functions from A to B and from B to A, respectively, defined as :
f = {(a, v), (b, u), (c, w)}, g = {(u, b), (v, a), (w, c)}.
Show that f and g both are bijections and find fog and gof.
Find fog and gof if : f(x) = c, c ∈ R, g(x) = sin `x^2`
Show that the function f : Q → Q, defined by f(x) = 3x + 5, is invertible. Also, find f−1
If A = {1, 2, 3, 4} and B = {a, b, c, d}, define any four bijections from A to B. Also give their inverse functions.
Let f be an invertible real function. Write ( f-1 of ) (1) + ( f-1 of ) (2) +..... +( f-1 of ) (100 )
Let A = {1, 2, 3, 4} and B = {a, b} be two sets. Write the total number of onto functions from A to B.
Write the domain of the real function
`f (x) = sqrtx - [x] .`
Write whether f : R → R, given by `f(x) = x + sqrtx^2` is one-one, many-one, onto or into.
\[f : A \to \text{B given by } 3^{ f\left( x \right)} + 2^{- x} = 4\] is a bijection, then
Let the function
\[f : R - \left\{ - b \right\} \to R - \left\{ 1 \right\}\]
\[f\left( x \right) = \frac{x + a}{x + b}, a \neq b .\text{Then},\]
Which of the following functions from
\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\}\]
Let
\[A = \left\{ x \in R : x \leq 1 \right\} and f : A \to A\] be defined as
\[f\left( x \right) = x \left( 2 - x \right)\] Then,
\[f^{- 1} \left( x \right)\] is
If \[F : [1, \infty ) \to [2, \infty )\] is given by
\[f\left( x \right) = x + \frac{1}{x}, then f^{- 1} \left( x \right)\]
Let [x] denote the greatest integer less than or equal to x. If \[f\left( x \right) = \sin^{- 1} x, g\left( x \right) = \left[ x^2 \right]\text{ and } h\left( x \right) = 2x, \frac{1}{2} \leq x \leq \frac{1}{\sqrt{2}}\]
If \[g\left( x \right) = x^2 + x - 2\text{ and} \frac{1}{2} gof\left( x \right) = 2 x^2 - 5x + 2\] is equal to
If \[f\left( x \right) = \sin^2 x\] and the composite function \[g\left( f\left( x \right) \right) = \left| \sin x \right|\] then g(x) is equal to
Mark the correct alternative in the following question:
If the set A contains 7 elements and the set B contains 10 elements, then the number one-one functions from A to B is
Write about strlen() function.
The domain of the function f: R → R defined by f(x) = `sqrt(x^2 - 3x + 2)` is ______
Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not
k = {(1,4), (2, 5)}
Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:
h(x) = x|x|
Which of the following functions from Z into Z is bijective?
An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.
Ravi decides to explore these sets for various types of relations and functions.
- Ravi wants to find the number of injective functions from B to G. How many numbers of injective functions are possible?
Let f: R → R defined by f(x) = x4. Choose the correct answer
Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R then 'f' is
Difference between the greatest and least value of f(x) = `(1 + (cos^-1x)/π)^2 - (1 + (sin^-1x)/π)^2` is ______.
Let f: R→R be a polynomial function satisfying f(x + y) = f(x) + f(y) + 3xy(x + y) –1 ∀ x, y ∈ R and f'(0) = 1, then `lim_(x→∞)(f(2x))/(f(x)` is equal to ______.
Let a and b are two positive integers such that b ≠ 1. Let g(a, b) = Number of lattice points inside the quadrilateral formed by lines x = 0, y = 0, x = b and y = a. f(a, b) = `[a/b] + [(2a)/b] + ... + [((b - 1)a)/b]`, then the value of `[(g(101, 37))/(f(101, 37))]` is ______.
(Note P(x, y) is lattice point if x, y ∈ I)
(where [.] denotes greatest integer function)
Let f(x) be a polynomial function of degree 6 such that `d/dx (f(x))` = (x – 1)3 (x – 3)2, then
Assertion (A): f(x) has a minimum at x = 1.
Reason (R): When `d/dx (f(x)) < 0, ∀ x ∈ (a - h, a)` and `d/dx (f(x)) > 0, ∀ x ∈ (a, a + h)`; where 'h' is an infinitesimally small positive quantity, then f(x) has a minimum at x = a, provided f(x) is continuous at x = a.