हिंदी

Let a = { X : − 1 ≤ X ≤ 1 } and F : a → a Such that F ( X ) = X | X | (A) a Bijection (B) Injective but Not Surjective (C) Surjective but Not Injective (D) Neither Injective Nor Surjective - Mathematics

Advertisements
Advertisements

प्रश्न

Let

\[A = \left\{ x : - 1 \leq x \leq 1 \right\} \text{and} f : A \to \text{A such that f}\left( x \right) = x|x|\]

 

विकल्प

  • a bijection

  • injective but not surjective

  • surjective but not injective

  • neither injective nor surjective

MCQ

उत्तर

Injectivity:
Let x and y be any two elements in the domain A.
Case-1: Let x and y be two positive numbers, such that\[f\left( x \right) = f\left( y \right)\] 
\[ \Rightarrow x\left| x \right| = y\left| y \right|\] 
\[ \Rightarrow x\left( x \right) = y\left( y \right)\] 
\[ \Rightarrow x^2 = y^2 \] 
\[ \Rightarrow x = y\] 

Case-2: Let x and y be two negative numbers, such that
\[f\left( x \right) = f\left( y \right)\] 
\[ \Rightarrow x\left| x \right| = y\left| y \right|\] 
\[ \Rightarrow x\left( - x \right) = y\left( - y \right)\] 
\[ \Rightarrow - x^2 = - y^2 \] 
\[ \Rightarrow x^2 = y^2 \] 
\[ \Rightarrow x = y\] 
Case-3: Let be positive and y be negative.
\[\text{Then},x \neq y\] 
\[ \Rightarrow f\left( x \right) = x\left| x \right| \text{is positive and }f\left( y \right) = y\left| y \right| \text{is negative}\] 
\[ \Rightarrow f\left( x \right) \neq f\left( y \right)\] 
\[So, x \neq y\] 
\[ \Rightarrow f\left( x \right) \neq f\left( y \right)\]
So, f is one-one.
Surjectivity:
Let y be an element in the co-domain, such that y = f (x)
\[Case-1: \text{Let } y>0. \text{Then}, 0<y\leq1\] 
\[y = f\left( x \right) = x\left| x \right| > 0\] 
\[ \Rightarrow x > 0\] 
\[ \Rightarrow \left| x \right| = x\] 
\[ \Rightarrow f\left( x \right) = y\] 
\[ \Rightarrow x\left| x \right| = y\] 
\[ \Rightarrow x\left( x \right) = y\] 
\[ \Rightarrow x^2 = y\] 
\[ \Rightarrow x = \sqrt{y} \in A \left( \text{We do not get}\pm, \text{as } x > 0 \right)\] \[\] \[Case-2: Lety<0.\text{Then},-1\leq y<0\] 
\[y = f\left( x \right) = x\left| x \right| < 0\] 
\[ \Rightarrow x < 0\] 
\[ \Rightarrow \left| x \right| = - x\] 
\[ \Rightarrow f\left( x \right) = y\] 
\[ \Rightarrow x\left| x \right| = y\] 
\[ \Rightarrow x\left( - x \right) = y\] 
\[ \Rightarrow - x^2 = y\] 
\[ \Rightarrow x^2 = - y\] 
\[ \Rightarrow x = - \sqrt{- y} \in A \left( \text{We do not get}\pm, \text{ as } x>0 \right)\]
\[\Rightarrow\]is onto
\[\Rightarrow\] is a bijection.
So, the answer is (a).
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.6 [पृष्ठ ७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.6 | Q 16 | पृष्ठ ७६

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Let f: N → N be defined by f(n) = `{((n+1)/2, ",if n is odd"),(n/2,",n is even"):}` for all n ∈ N.

State whether the function f is bijective. Justify your answer.


Give examples of two functions fN → Z and gZ → Z such that g o f is injective but gis not injective.

(Hint: Consider f(x) = x and g(x) =|x|)


Give an example of a function which is neither one-one nor onto ?


Classify the following function as injection, surjection or bijection :

 f : R → R, defined by f(x) = sinx


Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = 5x3 + 4


If A = {1, 2, 3}, show that a onto function f : A → A must be one-one.


Show that if f1 and f2 are one-one maps from R to R, then the product f1 × f2 : R → R defined by (f1 × f2) (x) = f1 (x) f2 (x) need not be one - one.


Let f : N → N be defined by

`f(n) = { (n+ 1, if n  is  odd),( n-1 , if n  is  even):}`

Show that f is a bijection. 

                      [CBSE 2012, NCERT]


Let f = {(3, 1), (9, 3), (12, 4)} and g = {(1, 3), (3, 3) (4, 9) (5, 9)}. Show that gof and fog are both defined. Also, find fog and gof.


Let A = {abc}, B = {u vw} and let f and g be two functions from A to B and from B to A, respectively, defined as :
f = {(av), (bu), (cw)}, g = {(ub), (va), (wc)}.
Show that f and g both are bijections and find fog and gof.


Find fog and gof  if : f(x) = c, c ∈ R, g(x) = sin `x^2`


Show that the function f : Q → Q, defined by f(x) = 3x + 5, is invertible. Also, find f−1


If A = {1, 2, 3, 4} and B = {abcd}, define any four bijections from A to B. Also give their inverse functions.


Let f be an invertible real function. Write ( f-1  of ) (1) + ( f-1  of ) (2) +..... +( f-1 of ) (100 )


Let A = {1, 2, 3, 4} and B = {ab} be two sets. Write the total number of onto functions from A to B.


Write the domain of the real function

`f (x) = sqrtx - [x] .`


Write whether f : R → R, given by `f(x) = x + sqrtx^2` is one-one, many-one, onto or into.


 \[f : A \to \text{B given by } 3^{ f\left( x \right)} + 2^{- x} = 4\] is a bijection, then

 

 

 

 


Let the function

\[f : R - \left\{ - b \right\} \to R - \left\{ 1 \right\}\]

\[f\left( x \right) = \frac{x + a}{x + b}, a \neq b .\text{Then},\]

 


Which of the following functions from

\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\}\]

 


Let

\[A = \left\{ x \in R : x \leq 1 \right\} and f : A \to A\] be defined as

\[f\left( x \right) = x \left( 2 - x \right)\] Then,

\[f^{- 1} \left( x \right)\] is


If  \[F : [1, \infty ) \to [2, \infty )\] is given by

\[f\left( x \right) = x + \frac{1}{x}, then f^{- 1} \left( x \right)\]

 


Let [x] denote the greatest integer less than or equal to x. If \[f\left( x \right) = \sin^{- 1} x, g\left( x \right) = \left[ x^2 \right]\text{  and } h\left( x \right) = 2x, \frac{1}{2} \leq x \leq \frac{1}{\sqrt{2}}\]

 


If  \[g\left( x \right) = x^2 + x - 2\text{ and} \frac{1}{2} gof\left( x \right) = 2 x^2 - 5x + 2\] is equal to


If  \[f\left( x \right) = \sin^2 x\] and the composite function   \[g\left( f\left( x \right) \right) = \left| \sin x \right|\] then g(x) is equal to


Mark the correct alternative in the following question:
If the set A contains 7 elements and the set B contains 10 elements, then the number one-one functions from A to B is


Write about strlen() function.


The domain of the function f: R → R defined by f(x) = `sqrt(x^2 - 3x + 2)` is ______


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

k = {(1,4), (2, 5)}


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

h(x) = x|x|


Which of the following functions from Z into Z is bijective?


An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Ravi wants to find the number of injective functions from B to G. How many numbers of injective functions are possible?

Let f: R → R defined by f(x) = x4. Choose the correct answer


Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R then 'f' is


Difference between the greatest and least value of f(x) = `(1 + (cos^-1x)/π)^2 - (1 + (sin^-1x)/π)^2` is ______.


Let f: R→R be a polynomial function satisfying f(x + y) = f(x) + f(y) + 3xy(x + y) –1 ∀ x, y ∈ R and f'(0) = 1, then `lim_(x→∞)(f(2x))/(f(x)` is equal to ______.


Let a and b are two positive integers such that b ≠ 1. Let g(a, b) = Number of lattice points inside the quadrilateral formed by lines x = 0, y = 0, x = b and y = a. f(a, b) = `[a/b] + [(2a)/b] + ... + [((b - 1)a)/b]`, then the value of `[(g(101, 37))/(f(101, 37))]` is ______.

(Note P(x, y) is lattice point if x, y ∈ I)

(where [.] denotes greatest integer function)


Let f(x) be a polynomial function of degree 6 such that `d/dx (f(x))` = (x – 1)3 (x – 3)2, then

Assertion (A): f(x) has a minimum at x = 1.

Reason (R): When `d/dx (f(x)) < 0, ∀  x ∈ (a - h, a)` and `d/dx (f(x)) > 0, ∀  x ∈ (a, a + h)`; where 'h' is an infinitesimally small positive quantity, then f(x) has a minimum at x = a, provided f(x) is continuous at x = a.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×