Advertisements
Advertisements
प्रश्न
Let
\[A = \left\{ x : - 1 \leq x \leq 1 \right\} \text{and} f : A \to \text{A such that f}\left( x \right) = x|x|\]
पर्याय
a bijection
injective but not surjective
surjective but not injective
neither injective nor surjective
उत्तर
Injectivity:
Let x and y be any two elements in the domain A.
Case-1: Let x and y be two positive numbers, such that\[f\left( x \right) = f\left( y \right)\]
\[ \Rightarrow x\left| x \right| = y\left| y \right|\]
\[ \Rightarrow x\left( x \right) = y\left( y \right)\]
\[ \Rightarrow x^2 = y^2 \]
\[ \Rightarrow x = y\]
\[ \Rightarrow x\left| x \right| = y\left| y \right|\]
\[ \Rightarrow x\left( - x \right) = y\left( - y \right)\]
\[ \Rightarrow - x^2 = - y^2 \]
\[ \Rightarrow x^2 = y^2 \]
\[ \Rightarrow x = y\]
\[ \Rightarrow f\left( x \right) = x\left| x \right| \text{is positive and }f\left( y \right) = y\left| y \right| \text{is negative}\]
\[ \Rightarrow f\left( x \right) \neq f\left( y \right)\]
\[So, x \neq y\]
\[ \Rightarrow f\left( x \right) \neq f\left( y \right)\]
Let y be an element in the co-domain, such that y = f (x)
\[y = f\left( x \right) = x\left| x \right| > 0\]
\[ \Rightarrow x > 0\]
\[ \Rightarrow \left| x \right| = x\]
\[ \Rightarrow f\left( x \right) = y\]
\[ \Rightarrow x\left| x \right| = y\]
\[ \Rightarrow x\left( x \right) = y\]
\[ \Rightarrow x^2 = y\]
\[ \Rightarrow x = \sqrt{y} \in A \left( \text{We do not get}\pm, \text{as } x > 0 \right)\] \[\] \[Case-2: Lety<0.\text{Then},-1\leq y<0\]
\[y = f\left( x \right) = x\left| x \right| < 0\]
\[ \Rightarrow x < 0\]
\[ \Rightarrow \left| x \right| = - x\]
\[ \Rightarrow f\left( x \right) = y\]
\[ \Rightarrow x\left| x \right| = y\]
\[ \Rightarrow x\left( - x \right) = y\]
\[ \Rightarrow - x^2 = y\]
\[ \Rightarrow x^2 = - y\]
\[ \Rightarrow x = - \sqrt{- y} \in A \left( \text{We do not get}\pm, \text{ as } x>0 \right)\]
So, the answer is (a).
APPEARS IN
संबंधित प्रश्न
Show that the function f in `A=R-{2/3} ` defined as `f(x)=(4x+3)/(6x-4)` is one-one and onto hence find f-1
Show that the Signum Function f: R → R, given by `f(x) = {(1, if x > 0), (0, if x = 0), (-1, if x < 0):}` is neither one-one nor onto
Find the number of all onto functions from the set {1, 2, 3, …, n} to itself.
Prove that the function f : N → N, defined by f(x) = x2 + x + 1, is one-one but not onto
Let A = [-1, 1]. Then, discuss whether the following function from A to itself is one-one, onto or bijective : `f (x) = x/2`
Let A = [-1, 1]. Then, discuss whether the following function from A to itself is one-one, onto or bijective : g(x) = |x|
Suppose f1 and f2 are non-zero one-one functions from R to R. Is `f_1 / f^2` necessarily one - one? Justify your answer. Here,`f_1/f_2 : R → R is given by (f_1/f_2) (x) = (f_1(x))/(f_2 (x)) for all x in R .`
Let f = {(1, −1), (4, −2), (9, −3), (16, 4)} and g = {(−1, −2), (−2, −4), (−3, −6), (4, 8)}. Show that gof is defined while fog is not defined. Also, find gof.
Find fog (2) and gof (1) when : f : R → R ; f(x) = x2 + 8 and g : R → R; g(x) = 3x3 + 1.
If f(x) = |x|, prove that fof = f.
Consider f : {1, 2, 3} → {a, b, c} and g : {a, b, c} → {apple, ball, cat} defined as f (1) = a, f (2) = b, f (3) = c, g (a) = apple, g (b) = ball and g (c) = cat. Show that f, g and gof are invertible. Find f−1, g−1 and gof−1and show that (gof)−1 = f −1o g−1
Consider f : R → R+ → [4, ∞) given by f(x) = x2 + 4. Show that f is invertible with inverse f−1 of f given by f−1 `(x)= sqrt (x-4)` where R+ is the set of all non-negative real numbers.
Let f : R `{- 4/3} `- 43 →">→ R be a function defined as f(x) = `(4x)/(3x +4)` . Show that f : R - `{-4/3}`→ Rang (f) is one-one and onto. Hence, find f -1.
If f : A → A, g : A → A are two bijections, then prove that fog is an injection ?
Which of the following graphs represents a one-one function?
If A = {1, 2, 3} and B = {a, b}, write the total number of functions from A to B.
Write the domain of the real function
`f (x) = sqrtx - [x] .`
Write the domain of the real function
`f (x) = sqrt([x] - x) .`
Write whether f : R → R, given by `f(x) = x + sqrtx^2` is one-one, many-one, onto or into.
What is the range of the function
`f (x) = ([x - 1])/(x -1) ?`
Let
f : R → R be given by
\[f\left( x \right) = \left[ x^2 \right] + \left[ x + 1 \right] - 3\]
where [x] denotes the greatest integer less than or equal to x. Then, f(x) is
(d) one-one and onto
The function \[f : [0, \infty ) \to \text {R given by } f\left( x \right) = \frac{x}{x + 1} is\]
Mark the correct alternative in the following question:
If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is
Write about strcmp() function.
Let A be a finite set. Then, each injective function from A into itself is not surjective.
Let f: R → R be defined by f(x) = `1/x` ∀ x ∈ R. Then f is ______.
Let A = R – {3}, B = R – {1}. Let f : A → B be defined by `"f"("x") = ("x" - 2)/("x" - 3)` Then, ____________.
The domain of the function `"f"("x") = 1/(sqrt ({"sin x"} + {"sin" ( pi + "x")}))` where {.} denotes fractional part, is
A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever
Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:
R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}
- Three friends F1, F2, and F3 exercised their voting right in general election-2019, then which of the following is true?
Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.
Answer the following questions using the above information.
- Let f: R → R be defined by f(x) = x2 is:
A function f: x → y is said to be one – one (or injective) if:
Function f: R → R, defined by f(x) = `x/(x^2 + 1)` ∀ x ∈ R is not
Number of integral values of x satisfying the inequality `(3/4)^(6x + 10 - x^2) < 27/64` is ______.
Consider a set containing function A= {cos–1cosx, sin(sin–1x), sinx((sinx)2 – 1), etan{x}, `e^(|cosx| + |sinx|)`, sin(tan(cosx)), sin(tanx)}. B, C, D, are subsets of A, such that B contains periodic functions, C contains even functions, D contains odd functions then the value of n(B ∩ C) + n(B ∩ D) is ______ where {.} denotes the fractional part of functions)
Let a and b are two positive integers such that b ≠ 1. Let g(a, b) = Number of lattice points inside the quadrilateral formed by lines x = 0, y = 0, x = b and y = a. f(a, b) = `[a/b] + [(2a)/b] + ... + [((b - 1)a)/b]`, then the value of `[(g(101, 37))/(f(101, 37))]` is ______.
(Note P(x, y) is lattice point if x, y ∈ I)
(where [.] denotes greatest integer function)
The domain of function is f(x) = `sqrt(-log_0.3(x - 1))/sqrt(x^2 + 2x + 8)` is ______.
Let f(n) = `[1/3 + (3n)/100]n`, where [n] denotes the greatest integer less than or equal to n. Then `sum_(n = 1)^56f(n)` is equal to ______.
Let A = {1, 2, 3, ..., 10} and f : A `rightarrow` A be defined as
f(k) = `{{:(k + 1, if k "is odd"),( k, if k "is even"):}`.
Then the number of possible functions g : A `rightarrow` A such that gof = f is ______.