मराठी

Which of the Following Functions from a = { X : − 1 ≤ X ≤ 1 } to Itself Are Bijections? (A) F ( X ) = X 2 (B) G ( X ) = Sin ( π X 2 ) (C) H ( X ) = | X | (D) K ( X ) = X 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Which of the following functions from

\[A = \left\{ x : - 1 \leq x \leq 1 \right\}\]

to itself are bijections?

 

 

 

पर्याय

  • \[f\left( x \right) = \frac{x}{2}\]

  • \[g\left( x \right) = \sin\left( \frac{\pi x}{2} \right)\]

  • \[h\left( x \right) = |x|\]

  • \[k\left( x \right) = x^2\]

MCQ

उत्तर

\[\left( a \right) \text{Range of f}=\left[ \frac{- 1}{2}, \frac{1}{2} \right]\neq A\] 
So, f is not a bijection. 
\[\left( b \right) \text{Range }=\left[ \sin\left( \frac{- \pi}{2} \right), \sin\left( \frac{\pi}{2} \right) \right]=\left[ - 1, 1 \right]=A\] 
So, g is a bijection.
\[\left( c \right) h\left( - 1 \right) = \left| - 1 \right| = 1\] 
\[\text{ and } h\left( 1 \right) = \left| 1 \right| = 1\] 
\[\Rightarrow-1 \text {and 1 have the same images}\] 
So, h is not a bijection. 
\[\]  \[\left( d \right) k\left( - 1 \right) = \left( - 1 \right)^2 = 1\] 
\[\text{and } k \left( 1 \right) = \left( 1 \right)^2 = 1\] 
\[\Rightarrow-1 \text{and 1 have the same images}\] 
So, k is not a bijection.

So, the answer is (b)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Functions - Exercise 2.6 [पृष्ठ ७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 2 Functions
Exercise 2.6 | Q 15 | पृष्ठ ७६

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Prove that the greatest integer function f: → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.


Show that the modulus function f: → R given by f(x) = |x| is neither one-one nor onto, where |x| is x, if x is positive or 0 and |x|  is − x if x is negative.


Let A and B be sets. Show that f: A × B → B × A such that (a, b) = (b, a) is bijective function.


Let A = R − {3} and B = R − {1}. Consider the function f: A → B defined by `f(x) = ((x- 2)/(x -3))`. Is f one-one and onto? Justify your answer.


Give an example of a function which is not one-one but onto ?


Which of the following functions from A to B are one-one and onto?
 f1 = {(1, 3), (2, 5), (3, 7)} ; A = {1, 2, 3}, B = {3, 5, 7}


Prove that the function f : N → N, defined by f(x) = x2 + x + 1, is one-one but not onto


Classify the following function as injection, surjection or bijection :

f : Z → Z, defined by f(x) = x2 + x


Give examples of two one-one functions f1 and f2 from R to R, such that f1 + f2 : R → R. defined by (f1 + f2) (x) = f1 (x) + f2 (x) is not one-one.


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = x2 + 8 and g(x) = 3x3 + 1 .


If f : A → B and g : B → C are one-one functions, show that gof is a one-one function.


 If f, g : R → R be two functions defined as f(x) = |x| + x and g(x) = |x|- x, ∀x∈R" .Then find fog and gof. Hence find fog(–3), fog(5) and gof (–2).


If A = {abc} and B = {−2, −1, 0, 1, 2}, write the total number of one-one functions from A to B.


Let \[f : \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \to R\]  be a function defined by f(x) = cos [x]. Write range (f).


Let A = {x ∈ R : −4 ≤ x ≤ 4 and x ≠ 0} and f : A → R be defined by \[f\left( x \right) = \frac{\left| x \right|}{x}\]Write the range of f.


Let A = {1, 2, 3, 4} and B = {ab} be two sets. Write the total number of onto functions from A to B.


If f : R → R be defined by f(x) = (3 − x3)1/3, then find fof (x).


Let fg : R → R be defined by f(x) = 2x + l and g(x) = x2−2 for all x

∈ R, respectively. Then, find gof.  [NCERT EXEMPLAR]


Which of the following functions form Z to itself are bijections?

 

 

 
 

The function

\[f : R \to R\] defined by\[f\left( x \right) = \left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)\]

(a) one-one but not onto
(b) onto but not one-one
(c) both one and onto
(d) neither one-one nor onto


If  \[f : R \to \left( - 1, 1 \right)\] is defined by

\[f\left( x \right) = \frac{- x|x|}{1 + x^2}, \text{ then } f^{- 1} \left( x \right)\] equals

 


Mark the correct alternative in the following question:
Let f : R→ R be defined as, f(x) =  \[\begin{cases}2x, if x > 3 \\ x^2 , if 1 < x \leq 3 \\ 3x, if x \leq 1\end{cases}\] 

Then, find f( \[-\]1) + f(2) + f(4)

 


Set A has 3 elements and the set B has 4 elements. Then the number of injective mappings that can be defined from A to B is ______.


Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(a, b): a is a person, b is an ancestor of a}


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

f = {(1, 4), (1, 5), (2, 4), (3, 5)}


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

h = {(1,4), (2, 5), (3, 5)}


Let f: R – `{3/5}` → R be defined by f(x) = `(3x + 2)/(5x - 3)`. Then ______.


The smallest integer function f(x) = [x] is ____________.


The number of bijective functions from set A to itself when A contains 106 elements is ____________.


Let f : R `->` R be a function defined by f(x) = x3 + 4, then f is ______.


An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Ravi wants to know among those relations, how many functions can be formed from B to G?

If f: R → R given by f(x) =(3 − x3)1/3, find f0f(x)


Let f: R → R defined by f(x) = x4. Choose the correct answer


A function f: x → y is/are called onto (or surjective) if x under f.


Let [x] denote the greatest integer ≤ x, where x ∈ R. If the domain of the real valued function f(x) = `sqrt((|[x]| - 2)/(|[x]| - 3)` is (–∞, a) ∪ [b, c) ∪ [4, ∞), a < b < c, then the value of a + b + c is ______.


Number of integral values of x satisfying the inequality `(3/4)^(6x + 10 - x^2) < 27/64` is ______.


`x^(log_5x) > 5` implies ______.


Let f: R→R be a polynomial function satisfying f(x + y) = f(x) + f(y) + 3xy(x + y) –1 ∀ x, y ∈ R and f'(0) = 1, then `lim_(x→∞)(f(2x))/(f(x)` is equal to ______.


Which one of the following graphs is a function of x?

Graph A Graph B

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×