English

Which of the Following Functions from a = { X : − 1 ≤ X ≤ 1 } to Itself Are Bijections? (A) F ( X ) = X 2 (B) G ( X ) = Sin ( π X 2 ) (C) H ( X ) = | X | (D) K ( X ) = X 2 - Mathematics

Advertisements
Advertisements

Question

Which of the following functions from

\[A = \left\{ x : - 1 \leq x \leq 1 \right\}\]

to itself are bijections?

 

 

 

Options

  • \[f\left( x \right) = \frac{x}{2}\]

  • \[g\left( x \right) = \sin\left( \frac{\pi x}{2} \right)\]

  • \[h\left( x \right) = |x|\]

  • \[k\left( x \right) = x^2\]

MCQ

Solution

\[\left( a \right) \text{Range of f}=\left[ \frac{- 1}{2}, \frac{1}{2} \right]\neq A\] 
So, f is not a bijection. 
\[\left( b \right) \text{Range }=\left[ \sin\left( \frac{- \pi}{2} \right), \sin\left( \frac{\pi}{2} \right) \right]=\left[ - 1, 1 \right]=A\] 
So, g is a bijection.
\[\left( c \right) h\left( - 1 \right) = \left| - 1 \right| = 1\] 
\[\text{ and } h\left( 1 \right) = \left| 1 \right| = 1\] 
\[\Rightarrow-1 \text {and 1 have the same images}\] 
So, h is not a bijection. 
\[\]  \[\left( d \right) k\left( - 1 \right) = \left( - 1 \right)^2 = 1\] 
\[\text{and } k \left( 1 \right) = \left( 1 \right)^2 = 1\] 
\[\Rightarrow-1 \text{and 1 have the same images}\] 
So, k is not a bijection.

So, the answer is (b)

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.6 [Page 76]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 2 Functions
Exercise 2.6 | Q 15 | Page 76

RELATED QUESTIONS

Show that the function f: R* → R* defined by `f(x) = 1/x` is one-one and onto, where R* is the set of all non-zero real numbers. Is the result true if the domain R* is replaced by N, with co-domain being same as R?


Check the injectivity and surjectivity of the following function:

f: N → N given by f(x) = x2


Prove that the greatest integer function f: → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.


Show that the Signum Function f: R → R, given by `f(x) = {(1, if x > 0), (0, if x  = 0), (-1, if x < 0):}`  is neither one-one nor onto


Let fR → be defined as f(x) = 10x + 7. Find the function gR → R such that g o f = f o = 1R.


Let A = {−1, 0, 1, 2}, B = {−4, −2, 0, 2} and f, g: A → B be functions defined by f(x) = x2 − x, x ∈ A and g(x) = `2|x - 1/2|- 1, x in A`. Are f and g equal?

Justify your answer. (Hint: One may note that two functions f: A → B and g: A → B such that f(a) = g(a) ∀ a ∈ A are called equal functions).


If the function `f(x) = sqrt(2x - 3)` is invertible then find its inverse. Hence prove that `(fof^(-1))(x) = x`


Classify the following function as injection, surjection or bijection :  f : Z → Z given by f(x) = x3


Classify the following function as injection, surjection or bijection :

f : Q − {3} → Q, defined by `f (x) = (2x +3)/(x-3)`


Find  fog (2) and gof (1) when : f : R → R ; f(x) = x2 + 8 and g : R → Rg(x) = 3x3 + 1.


Find fog and gof  if : f (x) = x2 g(x) = cos x .


Find fog and gof  if : f (x) = x+1, g(x) = `e^x`

.


If f : R → Rg : R → are given by f(x) = (x + 1)2 and g(x) = x2 + 1, then write the value of fog (−3).


Let \[f : \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \to\] A be defined by f(x) = sin x. If f is a bijection, write set A.


Let A = {1, 2, 3, 4} and B = {ab} be two sets. Write the total number of onto functions from A to B.


If f : R → R be defined by f(x) = (3 − x3)1/3, then find fof (x).


If f : {5, 6} → {2, 3} and g : {2, 3} → {5, 6} are given by f = {(5, 2), (6, 3)} and g = {(2, 5), (3, 6)}, then find fog.    [NCERT EXEMPLAR]


A function f  from the set of natural numbers to integers defined by

`{([n-1]/2," when  n is  odd"   is ),(-n/2,when  n  is  even ) :}`

 

 


Let f be an injective map with domain {xyz} and range {1, 2, 3}, such that exactly one of the following statements is correct and the remaining are false.

\[f\left( x \right) = 1, f\left( y \right) \neq 1, f\left( z \right) \neq 2 .\]

The value of

\[f^{- 1} \left( 1 \right)\] is 

 


If a function\[f : [2, \infty )\text{ to B defined by f}\left( x \right) = x^2 - 4x + 5\] is a bijection, then B =


Let

\[f : R \to R\]
\[f\left( x \right) = \frac{x^2 - 8}{x^2 + 2}\]
Then,  f is


Let  \[f\left( x \right) = \frac{1}{1 - x} . \text{Then}, \left\{ f o \left( fof \right) \right\} \left( x \right)\]

 


If  \[F : [1, \infty ) \to [2, \infty )\] is given by

\[f\left( x \right) = x + \frac{1}{x}, then f^{- 1} \left( x \right)\]

 


The domain of the function f: R → R defined by f(x) = `sqrt(x^2 - 3x + 2)` is ______


Let the function f: R → R be defined by f(x) = cosx, ∀ x ∈ R. Show that f is neither one-one nor onto


Let f: R → R be given by f(x) = tan x. Then f–1(1) is ______.


The function f : A → B defined by f(x) = 4x + 7, x ∈ R is ____________.


Which of the following functions from Z into Z is bijective?


A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever


Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:

R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}

  • Mr. ’X’ and his wife ‘W’ both exercised their voting right in the general election-2019, Which of the following is true?

An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Ravi wants to know among those relations, how many functions can be formed from B to G?

If f: R → R given by f(x) =(3 − x3)1/3, find f0f(x)


Function f: R → R, defined by f(x) = `x/(x^2 + 1)` ∀ x ∈ R is not


The domain of the function `cos^-1((2sin^-1(1/(4x^2-1)))/π)` is ______.


If f: R→R is a function defined by f(x) = `[x - 1]cos((2x - 1)/2)π`, where [ ] denotes the greatest integer function, then f is ______.


The domain of function is f(x) = `sqrt(-log_0.3(x - 1))/sqrt(x^2 + 2x + 8)` is ______.


Let f(n) = `[1/3 + (3n)/100]n`, where [n] denotes the greatest integer less than or equal to n. Then `sum_(n = 1)^56f(n)` is equal to ______.


Write the domain and range (principle value branch) of the following functions:

f(x) = tan–1 x.


ASSERTION (A): The relation f : {1, 2, 3, 4} `rightarrow` {x, y, z, p} defined by f = {(1, x), (2, y), (3, z)} is a bijective function.

REASON (R): The function f : {1, 2, 3} `rightarrow` {x, y, z, p} such that f = {(1, x), (2, y), (3, z)} is one-one.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×