English

Show that the Signum Function f: R → R, given by f(x)={1ifx>00ifx =0-1ifx<0 is neither one-one nor onto - Mathematics

Advertisements
Advertisements

Question

Show that the Signum Function f: R → R, given by `f(x) = {(1, if x > 0), (0, if x  = 0), (-1, if x < 0):}`  is neither one-one nor onto

Sum

Solution

f: R → R is given by,

`f(x) = {(1, if x > 0), (0, if x  = 0), (-1, if x < 0):}`

It is seen that f(1) = f(2) = 1, but 1 ≠ 2.

∴ f is not one-one.

Now, as f(x) takes only 3 values (1, 0, or −1) for the element −2 in co-domain R, there does not exist any x in domain R such that f(x) = −2.

∴ f is not onto.

Hence, the signum function is neither one-one nor onto.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations and Functions - Exercise 1.2 [Page 11]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 1 Relations and Functions
Exercise 1.2 | Q 5 | Page 11

RELATED QUESTIONS

Check the injectivity and surjectivity of the following function:

f: N → N given by f(x) = x2


Show that the modulus function f: → R given by f(x) = |x| is neither one-one nor onto, where |x| is x, if x is positive or 0 and |x|  is − x if x is negative.


Let A and B be sets. Show that f: A × B → B × A such that (a, b) = (b, a) is bijective function.


Show that function f: R `rightarrow` {x ∈ R : −1 < x < 1} defined by f(x) = `x/(1 + |x|)`, x ∈ R is one-one and onto function.


Give examples of two functions fN → Z and gZ → Z such that g o f is injective but gis not injective.

(Hint: Consider f(x) = x and g(x) =|x|)


Given examples of two functions fN → N and gN → N such that gof is onto but is not onto.

(Hint: Consider f(x) = x + 1 and `g(x) = {(x-1, ifx >1),(1, if x = 1):}`


Find the number of all onto functions from the set {1, 2, 3, …, n} to itself.


Let fR → R be the Signum Function defined as

f(x) = `{(1,x>0), (0, x =0),(-1, x< 0):}`

and gR → be the Greatest Integer Function given by g(x) = [x], where [x] is greatest integer less than or equal to x. Then does fog and gof coincide in (0, 1]?


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = x3 + 1


Classify the following function as injection, surjection or bijection :

f : Q → Q, defined by f(x) = x3 + 1


Let A = [-1, 1]. Then, discuss whether the following function from A to itself is one-one, onto or bijective : g(x) = |x|  


Set of ordered pair of  a function? If so, examine whether the mapping is injective or surjective :{(xy) : x is a person, y is the mother of x}


Show that the logarithmic function  f : R0+ → R   given  by f (x)  loga x ,a> 0   is   a  bijection.


If A = {1, 2, 3}, show that a onto function f : A → A must be one-one.


Find fog and gof  if : f (x) = x2 g(x) = cos x .


Let

f (x) =`{ (1 + x, 0≤ x ≤ 2) , (3 -x , 2 < x ≤ 3):}`

Find fof.


Show that the function f : Q → Q, defined by f(x) = 3x + 5, is invertible. Also, find f−1


If f : R → (0, 2) defined by `f (x) =(e^x - e^(x))/(e^x +e^(-x))+1`is invertible , find f-1.


If f : R → R is defined by f(x) = x2, find f−1 (−25).


Let A = {x ∈ R : −4 ≤ x ≤ 4 and x ≠ 0} and f : A → R be defined by \[f\left( x \right) = \frac{\left| x \right|}{x}\]Write the range of f.


What is the range of the function

`f (x) = ([x - 1])/(x -1) ?`


 \[f : A \to \text{B given by } 3^{ f\left( x \right)} + 2^{- x} = 4\] is a bijection, then

 

 

 

 


The range of the function

\[f\left( x \right) =^{7 - x} P_{x - 3}\]

 


\[f : R \to R\] is defined by

\[f\left( x \right) = \frac{e^{x^2} - e^{- x^2}}{e^{x^2 + e^{- x^2}}} is\]

 


The distinct linear functions that map [−1, 1] onto [0, 2] are


Mark the correct alternative in the following question:

If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is


Let f: R → R be defined by f(x) = 3x – 4. Then f–1(x) is given by ______.


For sets A, B and C, let f: A → B, g: B → C be functions such that g o f is injective. Then both f and g are injective functions.


Let f: R → R be the function defined by f(x) = 2x – 3 ∀ x ∈ R. write f–1 


If f: R → R is defined by f(x) = x2 – 3x + 2, write f(f (x))


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

f = {(1, 4), (1, 5), (2, 4), (3, 5)}


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

f(x) = `x/2`


Which of the following functions from Z into Z is bijective?


The domain of the function `"f"("x") = 1/(sqrt ({"sin x"} + {"sin" ( pi + "x")}))` where {.} denotes fractional part, is


Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let f: {1,2,3,....} → {1,4,9,....} be defined by f(x) = x2 is ____________.

'If 'f' is a linear function satisfying f[x + f(x)] = x + f(x), then f(5) can be equal to:


Write the domain and range (principle value branch) of the following functions:

f(x) = tan–1 x.


Let f(x) be a polynomial function of degree 6 such that `d/dx (f(x))` = (x – 1)3 (x – 3)2, then

Assertion (A): f(x) has a minimum at x = 1.

Reason (R): When `d/dx (f(x)) < 0, ∀  x ∈ (a - h, a)` and `d/dx (f(x)) > 0, ∀  x ∈ (a, a + h)`; where 'h' is an infinitesimally small positive quantity, then f(x) has a minimum at x = a, provided f(x) is continuous at x = a.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×