English

The Distinct Linear Functions that Map [−1, 1] onto [0, 2] Are (A) F ( X ) = X − 1 , G ( X ) = X + 1 (B) F ( X ) = X − 1 , G ( X ) = X + 1 (C) F ( X ) = − X − 1 , G ( X ) = X − 1 (D) None of These - Mathematics

Advertisements
Advertisements

Question

The distinct linear functions that map [−1, 1] onto [0, 2] are

Options

  • \[f\left( x \right) = x + 1, g\left( x \right) = - x + 1\]

  • \[f\left( x \right) = x - 1, g\left( x \right) = x + 1\]

  • \[f\left( x \right) = - x - 1, g\left( x \right) = x - 1\]

  • None of these

MCQ

Solution

Let us substitute the end-points of the intervals in the given functions. Here, domain = [-1, 1] and range =[0, 2]
By substituting -1 or 1 in each option, we get :

Option (a):

\[f\left( - 1 \right) = - 1 + 1 =  0  \text{ and }f\left( 1 \right) = 1 + 1 = 2\] 
\[g\left( - 1 \right) = 1 + 1 = 2 \text{ and }g\left( 1 \right) = - 1 + 1 = 0\]

So, option (a) is correct.
Option (b):

\[f\left( - 1 \right) = - 1 - 1 = -  2  \text{ and }f\left( 1 \right) = 1 - 1 = 0\] 
\[g\left( - 1 \right) = - 1 + 1 =0  \text{ and }g\left( 1 \right) = 1 + 1 = 2\]

Here, f (-1) gives -2

\[\not\in \left[ 0, 2 \right]\]

So, (b) is not correct.

Similarly, we can see that (c) is also not correct.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.6 [Page 78]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 2 Functions
Exercise 2.6 | Q 41 | Page 78

RELATED QUESTIONS

Check the injectivity and surjectivity of the following function:

f: N → N given by f(x) = x2


Show that the function f: R → R given by f(x) = x3 is injective.


Give examples of two functions fN → Z and gZ → Z such that g o f is injective but gis not injective.

(Hint: Consider f(x) = x and g(x) =|x|)


Which of the following functions from A to B are one-one and onto?

 f2 = {(2, a), (3, b), (4, c)} ; A = {2, 3, 4}, B = {abc}


Prove that the function f : N → N, defined by f(x) = x2 + x + 1, is one-one but not onto


State with reason whether the following functions have inverse :
f : {1, 2, 3, 4} → {10} with f = {(1, 10), (2, 10), (3, 10), (4, 10)}


State with reason whether the following functions have inverse :

g : {5, 6, 7, 8} → {1, 2, 3, 4} with g = {(5, 4), (6, 3), (7, 4), (8, 2)}


Let A = {1, 2, 3, 4}; B = {3, 5, 7, 9}; C = {7, 23, 47, 79} and f : A → Bg : B → C be defined as f(x) = 2x + 1 and g(x) = x2 − 2. Express (gof)−1 and f−1 og−1 as the sets of ordered pairs and verify that (gof)−1 = f−1 og−1.


If f : A → Ag : A → A are two bijections, then prove that fog is an injection ?


Write the total number of one-one functions from set A = {1, 2, 3, 4} to set B = {abc}.


If f : C → C is defined by f(x) = x2, write f−1 (−4). Here, C denotes the set of all complex numbers.


Write the domain of the real function

`f (x) = 1/(sqrt([x] - x)`.


If f(x) = x + 7 and g(x) = x − 7, x ∈ R, write fog (7).


The function \[f : [0, \infty ) \to \text {R given by } f\left( x \right) = \frac{x}{x + 1} is\]

 

 


If a function\[f : [2, \infty )\text{ to B defined by f}\left( x \right) = x^2 - 4x + 5\] is a bijection, then B =


Which of the following functions from

\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\}\]

 


Let  \[f\left( x \right) = x^2 and g\left( x \right) = 2^x\] Then, the solution set of the equation

\[fog \left( x \right) = gof \left( x \right)\] is 



If  \[F : [1, \infty ) \to [2, \infty )\] is given by

\[f\left( x \right) = x + \frac{1}{x}, then f^{- 1} \left( x \right)\]

 


Let \[f\left(x\right) = x^3\] be a function with domain {0, 1, 2, 3}. Then domain of \[f^{-1}\] is ______.


Mark the correct alternative in the following question:
Let A = {1, 2, ... , n} and B = {a, b}. Then the number of subjections from A into B is


Let A = R − (2) and B = R − (1). If f: A ⟶ B is a function defined by`"f(x)"=("x"-1)/("x"-2),` how that f is one-one and onto. Hence, find f−1


Write about strlen() function.


Let N be the set of natural numbers and the function f: N → N be defined by f(n) = 2n + 3 ∀ n ∈ N. Then f is ______.


Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(x, y): x is a person, y is the mother of x}


Let the function f: R → R be defined by f(x) = cosx, ∀ x ∈ R. Show that f is neither one-one nor onto


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

h = {(1,4), (2, 5), (3, 5)}


If f(x) = (4 – (x – 7)3}, then f–1(x) = ______.


The function f : R → R defined by f(x) = 3 – 4x is ____________.


Let A = R – {3}, B = R – {1}. Let f : A → B be defined by `"f"("x") = ("x" - 2)/("x" - 3)` Then, ____________.


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Based on the given information, f is best defined as:


Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let f: R → R be defined by f(x) = x2 is:

If f: R → R given by f(x) =(3 − x3)1/3, find f0f(x)


A function f: x → y is said to be one – one (or injective) if:


The domain of the function `cos^-1((2sin^-1(1/(4x^2-1)))/π)` is ______.


Let f: R→R be defined as f(x) = 2x – 1 and g: R – {1}→R be defined as g(x) = `(x - 1/2)/(x - 1)`. Then the composition function f (g(x)) is ______.


If f: [0, 1]→[0, 1] is defined by f(x) = `(x + 1)/4` and `d/(dx) underbrace(((fofof......of)(x)))_("n"  "times")""|_(x = 1/2) = 1/"m"^"n"`, m ∈ N, then the value of 'm' is ______.


Let f: R→R be a polynomial function satisfying f(x + y) = f(x) + f(y) + 3xy(x + y) –1 ∀ x, y ∈ R and f'(0) = 1, then `lim_(x→∞)(f(2x))/(f(x)` is equal to ______.


The function f(x) = [x], where [x] denotes the greatest integer less than or equal to x; is continuous at ______.


Let f(x) be a polynomial function of degree 6 such that `d/dx (f(x))` = (x – 1)3 (x – 3)2, then

Assertion (A): f(x) has a minimum at x = 1.

Reason (R): When `d/dx (f(x)) < 0, ∀  x ∈ (a - h, a)` and `d/dx (f(x)) > 0, ∀  x ∈ (a, a + h)`; where 'h' is an infinitesimally small positive quantity, then f(x) has a minimum at x = a, provided f(x) is continuous at x = a.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×