English

Let a = {X ∈ R : −4 ≤ X ≤ 4 and X ≠ 0} and F : a → R Bewrite the Range of F. - Mathematics

Advertisements
Advertisements

Question

Let A = {x ∈ R : −4 ≤ x ≤ 4 and x ≠ 0} and f : A → R be defined by \[f\left( x \right) = \frac{\left| x \right|}{x}\]Write the range of f.

Solution

\[\because f\left( x \right) = \frac{\left| x \right|}{x} = \frac{\pm x}{x} = \pm 1 \forall x \in A, \text{ range } off = \left\{ - 1, 1 \right\} . \]
\[\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.5 [Page 73]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 2 Functions
Exercise 2.5 | Q 19 | Page 73

RELATED QUESTIONS

Check the injectivity and surjectivity of the following function:

f: R → R given by f(x) = x2


Let S = {abc} and T = {1, 2, 3}. Find F−1 of the following functions F from S to T, if it exists.

F = {(a, 2), (b, 1), (c, 1)}


Let fR → R be the Signum Function defined as

f(x) = `{(1,x>0), (0, x =0),(-1, x< 0):}`

and gR → be the Greatest Integer Function given by g(x) = [x], where [x] is greatest integer less than or equal to x. Then does fog and gof coincide in (0, 1]?


Which of the following functions from A to B are one-one and onto?

 f2 = {(2, a), (3, b), (4, c)} ; A = {2, 3, 4}, B = {abc}


Classify the following function as injection, surjection or bijection :

 f : Z → Z, defined by f(x) = x − 5 


Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = 5x3 + 4


If f : A → B is an injection, such that range of f = {a}, determine the number of elements in A.


Let A = {1, 2, 3}. Write all one-one from A to itself.


Let R+ be the set of all non-negative real numbers. If f : R+ → R+ and g : R+ → R+ are defined as `f(x)=x^2` and `g(x)=+sqrtx` , find fog and gof. Are they equal functions ?


Let f : R → R and g : R → R be defined by f(x) = x2 and g(x) = x + 1. Show that fog ≠ gof.


Find fog and gof  if : f (x) = |x|, g (x) = sin x .


Find fog and gof  if : f (x) = x+1, g (x) = sin x .


Let f : R `{- 4/3} `- 43 →">→ R be a function defined as f(x) = `(4x)/(3x +4)` . Show that f : R - `{-4/3}`→ Rang (f) is one-one and onto. Hence, find f -1.


If f : A → Ag : A → A are two bijections, then prove that fog is a surjection ?


Let `f : R - {- 3/5}` → R be a function defined as `f  (x) = (2x)/(5x +3).` 

f-1 : Range of f → `R -{-3/5}`.


Let M be the set of all 2 × 2 matrices with entries from the set R of real numbers. Then, the function f : M→ R defined by f(A) = |A| for every A ∈ M, is

 


A function f from the set of natural numbers to the set of integers defined by

\[f\left( n \right)\begin{cases}\frac{n - 1}{2}, & \text{when n is odd} \\ - \frac{n}{2}, & \text{when n is even}\end{cases}\]

 


Let  \[f\left( x \right) = x^2 and g\left( x \right) = 2^x\] Then, the solution set of the equation

\[fog \left( x \right) = gof \left( x \right)\] is 



The inverse of the function

\[f : R \to \left\{ x \in R : x < 1 \right\}\] given by

\[f\left( x \right) = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] is 

 


Let 
\[f : R \to R\]  be given by \[f\left( x \right) = x^2 - 3\] Then, \[f^{- 1}\] is given by 

 


The domain of the function f: R → R defined by f(x) = `sqrt(x^2 - 3x + 2)` is ______


Let A be a finite set. Then, each injective function from A into itself is not surjective.


For sets A, B and C, let f: A → B, g: B → C be functions such that g o f is surjective. Then g is surjective.


Let D be the domain of the real valued function f defined by f(x) = `sqrt(25 - x^2)`. Then, write D


Let f: R → R be the function defined by f(x) = 2x – 3 ∀ x ∈ R. write f–1 


If f: R → R is defined by f(x) = x2 – 3x + 2, write f(f (x))


The function f : R → R defined by f(x) = 3 – 4x is ____________.


The number of bijective functions from set A to itself when A contains 106 elements is ____________.


Let A = R – {3}, B = R – {1}. Let f : A → B be defined by `"f"("x") = ("x" - 2)/("x" - 3)` Then, ____________.


Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.

Answer the following using the above information.

  • The function f: R → R defined by f(x) = x − 4 is ____________.

If f; R → R f(x) = 10x + 3 then f–1(x) is:


If f: R→R is a function defined by f(x) = `[x - 1]cos((2x - 1)/2)π`, where [ ] denotes the greatest integer function, then f is ______.


Difference between the greatest and least value of f(x) = `(1 + (cos^-1x)/π)^2 - (1 + (sin^-1x)/π)^2` is ______.


Let f: R→R be a polynomial function satisfying f(x + y) = f(x) + f(y) + 3xy(x + y) –1 ∀ x, y ∈ R and f'(0) = 1, then `lim_(x→∞)(f(2x))/(f(x)` is equal to ______.


Write the domain and range (principle value branch) of the following functions:

f(x) = tan–1 x.


Find the domain of sin–1 (x2 – 4).


If f : R `rightarrow` R is defined by `f(x) = (2x - 7)/4`, show that f(x) is one-one and onto.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×