English

Classify the Following Functions as Injection, Surjection Or Bijection : F : Q → Q, Defined By F(X) = X3 + 1 - Mathematics

Advertisements
Advertisements

Question

Classify the following function as injection, surjection or bijection :

f : Q → Q, defined by f(x) = x3 + 1

Sum

Solution

f : Q → Q, defined by f(x) = x3 + 1

Injection test :
Let x and y be any two elements in the domain (Q), such that f(x) = f(y).

f(x) = f(y)

x3+1 = y3+ 1

x3 = y3

x = y

So, f is an injection .
Surjection test:

Let y be any element in the co-domain (Q), such that f(x) = y for some element x in Q(domain).

f(x) = y

x3+ 1 = y

`x = 3sqrt(y-1) ,` which may not be in Q.

For example, if y= 8,

x3+ 1 =  8

 x3= 7

 `x = 3sqrt7,`which is not in Q.

So, f is not a surjection and f is not a bijection.

So, f is a surjection and f is a bijection.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.1 [Page 31]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 2 Functions
Exercise 2.1 | Q 5.13 | Page 31

RELATED QUESTIONS

Check the injectivity and surjectivity of the following function:

f: Z → Z given by f(x) = x3


Let fR → be defined as f(x) = 10x + 7. Find the function gR → R such that g o f = f o = 1R.


Give an example of a function which is neither one-one nor onto ?


Let A = {−1, 0, 1} and f = {(xx2) : x ∈ A}. Show that f : A → A is neither one-one nor onto.


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = 1 + x2


Show that the function f : R − {3} → R − {2} given by f(x) = `(x-2)/(x-3)` is a bijection.


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of each of the following:
(i) an injective map from A to B
(ii) a mapping from A to B which is not injective
(iii) a mapping from A to B.


Find fog and gof  if : f (x) = x+1, g (x) = sin x .


Find fog and gof  if : f(x)= x + 1, g (x) = 2x + 3 .


Find fog and gof  if : f(x) = `x^2` + 2 , g (x) = 1 − `1/ (1-x)`.


Consider f : {1, 2, 3} → {abc} and g : {abc} → {apple, ball, cat} defined as f (1) = af (2) = bf (3) = cg (a) = apple, g (b) = ball and g (c) =  cat. Show that fg and gof are invertible. Find f−1g−1 and gof−1and show that (gof)−1 = f 1o g−1


A function f : R → R is defined as f(x) = x3 + 4. Is it a bijection or not? In case it is a bijection, find f−1 (3).


Let f : R `{- 4/3} `- 43 →">→ R be a function defined as f(x) = `(4x)/(3x +4)` . Show that f : R - `{-4/3}`→ Rang (f) is one-one and onto. Hence, find f -1.


If f : R → (−1, 1) defined by `f (x) = (10^x- 10^-x)/(10^x + 10 ^-x)` is invertible, find f−1.


If A = {1, 2, 3} and B = {ab}, write the total number of functions from A to B.


If f : C → C is defined by f(x) = x2, write f−1 (−4). Here, C denotes the set of all complex numbers.


Let f  be a function from C (set of all complex numbers) to itself given by f(x) = x3. Write f−1 (−1).


Let

\[A = \left\{ x : - 1 \leq x \leq 1 \right\} \text{and} f : A \to \text{A such that f}\left( x \right) = x|x|\]

 


Let

\[f : R \to R\]
\[f\left( x \right) = \frac{x^2 - 8}{x^2 + 2}\]
Then,  f is


If \[g \left( f \left( x \right) \right) = \left| \sin x \right| \text{and} f \left( g \left( x \right) \right) = \left( \sin \sqrt{x} \right)^2 , \text{then}\]

 


 Let
\[g\left( x \right) = 1 + x - \left[ x \right] \text{and} f\left( x \right) = \begin{cases}- 1, & x < 0 \\ 0, & x = 0, \\ 1, & x > 0\end{cases}\] where [x] denotes the greatest integer less than or equal to x. Then for all \[x, f \left( g \left( x \right) \right)\] is equal to


Mark the correct alternative in the following question:
Let f :  \[-\] \[\left\{ \frac{3}{5} \right\}\] \[\to\]  R be defined by f(x) = \[\frac{3x + 2}{5x - 3}\] Then,

 


Which function is used to check whether a character is alphanumeric or not?


Write about strlen() function.


Show that the function f: R → R defined by f(x) = `x/(x^2 + 1)`, ∀ ∈ + R , is neither one-one nor onto


Let f, g: R → R be two functions defined as f(x) = |x| + x and g(x) = x – x ∀ x ∈ R. Then, find f o g and g o f


Let R be the set of real numbers and f: R → R be the function defined by f(x) = 4x + 5. Show that f is invertible and find f–1.


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

h(x) = x|x|


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

k(x) = x2 


Let f: R → R be given by f(x) = tan x. Then f–1(1) is ______.


Let A = R – {3}, B = R – {1}. Let f : A → B be defined by `"f"("x") = ("x" - 2)/("x" - 3)` Then, ____________.


The function f : R → R given by f(x) = x3 – 1 is ____________.


The domain of the function `"f"("x") = 1/(sqrt ({"sin x"} + {"sin" ( pi + "x")}))` where {.} denotes fractional part, is


Let R be a relation on the set L of lines defined by l1 R l2 if l1 is perpendicular to l2, then relation R is ____________.


If f: R → R given by f(x) =(3 − x3)1/3, find f0f(x)


Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R then 'f' is


If f: [0, 1]→[0, 1] is defined by f(x) = `(x + 1)/4` and `d/(dx) underbrace(((fofof......of)(x)))_("n"  "times")""|_(x = 1/2) = 1/"m"^"n"`, m ∈ N, then the value of 'm' is ______.


Let f: R→R be a polynomial function satisfying f(x + y) = f(x) + f(y) + 3xy(x + y) –1 ∀ x, y ∈ R and f'(0) = 1, then `lim_(x→∞)(f(2x))/(f(x)` is equal to ______.


Let f(x) = ax (a > 0) be written as f(x) = f1(x) + f2(x), where f1(x) is an even function and f2(x) is an odd function. Then f1(x + y) + f1(x – y) equals ______.


A function f : [– 4, 4] `rightarrow` [0, 4] is given by f(x) = `sqrt(16 - x^2)`. Show that f is an onto function but not a one-one function. Further, find all possible values of 'a' for which f(a) = `sqrt(7)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×