English

Let R be the set of real numbers and f: R → R be the function defined by f(x) = 4x + 5. Show that f is invertible and find f–1. - Mathematics

Advertisements
Advertisements

Question

Let R be the set of real numbers and f: R → R be the function defined by f(x) = 4x + 5. Show that f is invertible and find f–1.

Sum

Solution

Here the function f : R → R is defined as f (x) = 4x + 5 = y (say). Then

4x = y – 5 or x = `(y - 5)/4`.

This leads to a function g: R → R defined as

g(y) = `(y - 5)/4`.

Therefore, (gof) (x) = g(f(x) = g(4x + 5)

= `(4x + 5 - 5)/4`

= x

or

gof = IR

Similarly (fog) (y) = f(g(y))

= `f((y - 5)/4)`

= `4((y - 5)/4) + 5`

= y

or

fog = IR

Hence f is invertible and f-1 = g which is given by `f^-1 (x) = (x - 5)/4`

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations And Functions - Solved Examples [Page 6]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 1 Relations And Functions
Solved Examples | Q 15 | Page 6

RELATED QUESTIONS

Show that the function f: ℝ → ℝ defined by f(x) = `x/(x^2 + 1), ∀x in R`is neither one-one nor onto. Also, if g: ℝ → ℝ is defined as g(x) = 2x - 1. Find fog(x)


Classify the following function as injection, surjection or bijection :  f : Z → Z given by f(x) = x2


Classify the following function as injection, surjection or bijection :

f : Z → Z, defined by f(x) = x2 + x


If A = {1, 2, 3}, show that a one-one function f : A → A must be onto.


Find gof and fog when f : R → R and g : R → R is  defined by  f(x) = 8x3 and  g(x) = x1/3.


Let A = {abc}, B = {u vw} and let f and g be two functions from A to B and from B to A, respectively, defined as :
f = {(av), (bu), (cw)}, g = {(ub), (va), (wc)}.
Show that f and g both are bijections and find fog and gof.


Let f : R → R and g : R → R be defined by f(x) = x2 and g(x) = x + 1. Show that fog ≠ gof.


  ` if  f : (-π/2 , π/2)` → R and g : [−1, 1]→ R be defined as f(x) = tan x and g(x) = `sqrt(1 - x^2)` respectively, describe fog and gof.


Let

f (x) =`{ (1 + x, 0≤ x ≤ 2) , (3 -x , 2 < x ≤ 3):}`

Find fof.


 If f, g : R → R be two functions defined as f(x) = |x| + x and g(x) = |x|- x, ∀x∈R" .Then find fog and gof. Hence find fog(–3), fog(5) and gof (–2).


Let C denote the set of all complex numbers. A function f : C → C is defined by f(x) = x3. Write f−1(1).


Let f : R → Rg : R → R be two functions defined by f(x) = x2 + x + 1 and g(x) = 1 − x2. Write fog (−2).


Write the domain of the real function

`f (x) = sqrt([x] - x) .`


Let\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = \text{B and C} = \left\{ x \in R : x \geq 0 \right\} and\]\[S = \left\{ \left( x, y \right) \in A \times B : x^2 + y^2 = 1 \right\} \text{and } S_0 = \left\{ \left( x, y \right) \in A \times C : x^2 + y^2 = 1 \right\}\]

Then,



A function f  from the set of natural numbers to integers defined by

`{([n-1]/2," when  n is  odd"   is ),(-n/2,when  n  is  even ) :}`

 

 


Let

\[f : R \to R\]  be a function defined by

\[f\left( x \right) = \frac{e^{|x|} - e^{- x}}{e^x + e^{- x}} . \text{Then},\]
 

Which of the following functions from

\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\}\]

 


Let  \[f\left( x \right) = x^2 and g\left( x \right) = 2^x\] Then, the solution set of the equation

\[fog \left( x \right) = gof \left( x \right)\] is 



Mark the correct alternative in the following question:
If the set A contains 7 elements and the set B contains 10 elements, then the number one-one functions from A to B is


Which function is used to check whether a character is alphanumeric or not?


The domain of the function f: R → R defined by f(x) = `sqrt(x^2 - 3x + 2)` is ______


The smallest integer function f(x) = [x] is ____________.


Let f : [0, ∞) → [0, 2] be defined by `"f" ("x") = (2"x")/(1 + "x"),` then f is ____________.


If N be the set of all-natural numbers, consider f: N → N such that f(x) = 2x, ∀ x ∈ N, then f is ____________.


Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • The function f: Z → Z defined by f(x) = x2 is ____________.

A function f: x → y is/are called onto (or surjective) if x under f.


If log102 = 0.3010.log103 = 0.4771 then the number of ciphers after decimal before a significant figure comes in `(5/3)^-100` is ______.


ASSERTION (A): The relation f : {1, 2, 3, 4} `rightarrow` {x, y, z, p} defined by f = {(1, x), (2, y), (3, z)} is a bijective function.

REASON (R): The function f : {1, 2, 3} `rightarrow` {x, y, z, p} such that f = {(1, x), (2, y), (3, z)} is one-one.


Find the domain of sin–1 (x2 – 4).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×