English

` If F : (-π/2 , π/2)` → R And G : [−1, 1]→ R Be Defined As F(X) = Tan X And G(X) = `Sqrt(1 - X^2)` Respectively, Describe Fog And Gof. - Mathematics

Advertisements
Advertisements

Question

  ` if  f : (-π/2 , π/2)` → R and g : [−1, 1]→ R be defined as f(x) = tan x and g(x) = `sqrt(1 - x^2)` respectively, describe fog and gof.

Solution

`g (x) = sqrt (1- x^2)`

⇒ x2 ≥ 0, ∀x ∈[−1, 1]

⇒ −x2 ≤ 0, ∀x ∈ [−1, 1]

⇒ 1−x2 ≤ 1, ∀x ∈ [−1, 1]

We know that 1 - x2 ≥0

⇒ 0≤1 -x2≤1

⇒ Range of g(x) = [0, 1]

So, f : ` ( π/2 , π/2)` → R and g : [−1, 1]→ [0, 1]

Computation of fog :

Clearly, the range of g is a subset of the domain of f.

So, fog : [−1, 1] → R

(fog) (x) = f (g (x))

= f `( sqrt (1 - x^2))`

= tan `sqrt (1 - x^2)`

Computation of gof:

Clearly, the range of f is not a subset of the domain of g.

⇒ Domain (gof) = { x ∈ domain of f and f (x)∈domain of g}

⇒ Domain (gof) =`{ x in ((-π)/2 , π/2)` and tan x ∈ [−1,1] }`

⇒ Domain (gof) =  `{x in((-π)/2 , π/2) and x in (-π)/4 , π/4 )} `

⇒ Domain (gof) = `{x in ((-x)/4 , π/4) ,}`

Now, gof :  `((-x)/4 , π/4)` → R

So, (gof) (x) = g (f (x))

= g (tan x)

= `sqrt(1- tan^2 x)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.3 [Page 54]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 2 Functions
Exercise 2.3 | Q 9 | Page 54

RELATED QUESTIONS

Check the injectivity and surjectivity of the following function:

f: Z → Z given by f(x) = x2


Give an example of a function which is one-one but not onto ?


Give examples of two one-one functions f1 and f2 from R to R, such that f1 + f2 : R → R. defined by (f1 + f2) (x) = f1 (x) + f2 (x) is not one-one.


Suppose f1 and f2 are non-zero one-one functions from R to R. Is `f_1 / f^2` necessarily one - one? Justify your answer. Here,`f_1/f_2 : R → R   is   given   by   (f_1/f_2) (x) = (f_1(x))/(f_2 (x))  for all  x in R .`


Let f : N → N be defined by

`f(n) = { (n+ 1, if n  is  odd),( n-1 , if n  is  even):}`

Show that f is a bijection. 

                      [CBSE 2012, NCERT]


Let R+ be the set of all non-negative real numbers. If f : R+ → R+ and g : R+ → R+ are defined as `f(x)=x^2` and `g(x)=+sqrtx` , find fog and gof. Are they equal functions ?


 Find fog and gof  if  : f (x) = ex g(x) = loge x .


Find fog and gof  if : f(x) = `x^2` + 2 , g (x) = 1 − `1/ (1-x)`.


Let f be a real function given by f (x)=`sqrt (x-2)`
Find each of the following:

(i) fof
(ii) fofof
(iii) (fofof) (38)
(iv) f2

Also, show that fof ≠ `f^2` .


Find f −1 if it exists : f : A → B, where A = {0, −1, −3, 2}; B = {−9, −3, 0, 6} and f(x) = 3 x.


A function f : R → R is defined as f(x) = x3 + 4. Is it a bijection or not? In case it is a bijection, find f−1 (3).


Consider the function f : R→  [-9 , ∞ ]given by f(x) = 5x2 + 6x - 9. Prove that f is invertible with -1 (y) = `(sqrt(54 + 5y) -3)/5`             [CBSE 2015]


If f : A → Ag : A → A are two bijections, then prove that fog is an injection ?


If f : C → C is defined by f(x) = (x − 2)3, write f−1 (−1).


If f : R → R defined by f(x) = 3x − 4 is invertible, then write f−1 (x).


Let A = {x ∈ R : −4 ≤ x ≤ 4 and x ≠ 0} and f : A → R be defined by \[f\left( x \right) = \frac{\left| x \right|}{x}\]Write the range of f.


Let f : R → R+ be defined by f(x) = axa > 0 and a ≠ 1. Write f−1 (x).


Let f : R − {−1} → R − {1} be given by\[f\left( x \right) = \frac{x}{x + 1} . \text{Write } f^{- 1} \left( x \right)\]


Let the function

\[f : R - \left\{ - b \right\} \to R - \left\{ 1 \right\}\]

\[f\left( x \right) = \frac{x + a}{x + b}, a \neq b .\text{Then},\]

 


Let f be an injective map with domain {xyz} and range {1, 2, 3}, such that exactly one of the following statements is correct and the remaining are false.

\[f\left( x \right) = 1, f\left( y \right) \neq 1, f\left( z \right) \neq 2 .\]

The value of

\[f^{- 1} \left( 1 \right)\] is 

 


The function

\[f : R \to R, f\left( x \right) = x^2\]
 

Let

 \[A = \left\{ x \in R : x \geq 1 \right\}\] The inverse of the function, 

\[f : A \to A\] given by

\[f\left( x \right) = 2^{x \left( x - 1 \right)} , is\]

 


If the function

\[f : R \to R\]  be such that

\[f\left( x \right) = x - \left[ x \right]\] where [x] denotes the greatest integer less than or equal to x, then \[f^{- 1} \left( x \right)\]

 


Let

\[f : [2, \infty ) \to X\] be defined by

\[f\left( x \right) = 4x - x^2\] Then, f is invertible if X =

 


Let [x] denote the greatest integer less than or equal to x. If \[f\left( x \right) = \sin^{- 1} x, g\left( x \right) = \left[ x^2 \right]\text{  and } h\left( x \right) = 2x, \frac{1}{2} \leq x \leq \frac{1}{\sqrt{2}}\]

 


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

h = {(1,4), (2, 5), (3, 5)}


Using the definition, prove that the function f: A→ B is invertible if and only if f is both one-one and onto


Let f: R → R be defined by f(x) = `1/x` ∀ x ∈ R. Then f is ______.


The function f : R → R defined by f(x) = 3 – 4x is ____________.


Let g(x) = x2 – 4x – 5, then ____________.


Let f : R → R, g : R → R be two functions such that f(x) = 2x – 3, g(x) = x3 + 5. The function (fog)-1 (x) is equal to ____________.


The function f: R → R defined as f(x) = x3 is:


An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Ravi wants to know among those relations, how many functions can be formed from B to G?

Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R then 'f' is


Consider a function f: `[0, pi/2] ->` R, given by f(x) = sinx and `g[0, pi/2] ->` R given by g(x) = cosx then f and g are


`x^(log_5x) > 5` implies ______.


Let f(1, 3) `rightarrow` R be a function defined by f(x) = `(x[x])/(1 + x^2)`, where [x] denotes the greatest integer ≤ x, Then the range of f is ______.


Let f(x) be a polynomial of degree 3 such that f(k) = `-2/k` for k = 2, 3, 4, 5. Then the value of 52 – 10f(10) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×