English

The Inverse of the Function, F : a → a Given by F ( X ) = 2 X ( X − 1 ) , I S (A) ( 1 2 ) X ( X − 1 ) (B) 1 2 { 1 + √ 1 + 4 Log 2 X } (C) 1 2 { 1 − √ 1 + 4 Log 2 X } (D) Not Defined - Mathematics

Advertisements
Advertisements

Question

Let

 \[A = \left\{ x \in R : x \geq 1 \right\}\] The inverse of the function, 

\[f : A \to A\] given by

\[f\left( x \right) = 2^{x \left( x - 1 \right)} , is\]

 

Options

  • \[\left( \frac{1}{2} \right)^{x \left( x - 1 \right)}\]

  • \[\frac{1}{2} \left\{ 1 + \sqrt{1 + 4 \log_2 x} \right\}\]

  •  \[\frac{1}{2} \left\{ 1 - \sqrt{1 + 4 \log_2 x} \right\}\]

  • not defined

MCQ

Solution

\[\text{Let} f^{- 1} \left( x \right) = y . . . \left( 1 \right)\] 
\[ \Rightarrow f\left( y \right) = x\] 
\[ \Rightarrow 2^{y\left( y - 1 \right)} = x\] 
\[ \Rightarrow 2^{y^2 - y} = x\] 
\[ \Rightarrow y^2 - y = \log_2 x\] 
\[ \Rightarrow y^2 - y + \frac{1}{4} = \log_2 x + \frac{1}{4}\] 
\[ \Rightarrow \left( y - \frac{1}{2} \right)^2 = \frac{4 \log_2 x + 1}{4}\] 
\[ \Rightarrow y - \frac{1}{2} = \pm \frac{\sqrt{4 \log_2 x + 1}}{2}\] 
\[ \Rightarrow y = \frac{1}{2} \pm \frac{\sqrt{4 \log_2 x + 1}}{2}\] 
\[ \Rightarrow y = \frac{1}{2} + \frac{\sqrt{4 \log_2 x + 1}}{2} \left( \because y \geq1 \right)\] 
\[So, f^{- 1} \left( x \right) = \frac{1}{2}(1 + \sqrt{1 + 4 \log_2 x} ) [\text{from}\left( 1 \right)]\] 

So, the answer is (b).

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.6 [Page 78]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 2 Functions
Exercise 2.6 | Q 34 | Page 78

RELATED QUESTIONS

Let fR → be defined as f(x) = 10x + 7. Find the function gR → R such that g o f = f o = 1R.


Which of the following functions from A to B are one-one and onto?
 f1 = {(1, 3), (2, 5), (3, 7)} ; A = {1, 2, 3}, B = {3, 5, 7}


Prove that the function f : N → N, defined by f(x) = x2 + x + 1, is one-one but not onto


Classify the following function as injection, surjection or bijection :  f : Z → Z given by f(x) = x3


Let A = [-1, 1]. Then, discuss whether the following function from A to itself is one-one, onto or bijective : g(x) = |x|  


Set of ordered pair of  a function? If so, examine whether the mapping is injective or surjective :{(xy) : x is a person, y is the mother of x}


If A = {1, 2, 3}, show that a one-one function f : A → A must be onto.


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = x and g(x) = |x| .


Let f : R → R and g : R → R be defined by f(x) = + 1 and (x) = x − 1. Show that fog = gof = IR.


If f : A → B and g : B → C are one-one functions, show that gof is a one-one function.


Find fog and gof  if : f(x) = sin−1 x, g(x) = x2


Find fog and gof  if : f(x) = `x^2` + 2 , g (x) = 1 − `1/ (1-x)`.


Let

f (x) =`{ (1 + x, 0≤ x ≤ 2) , (3 -x , 2 < x ≤ 3):}`

Find fof.


Consider f : {1, 2, 3} → {abc} and g : {abc} → {apple, ball, cat} defined as f (1) = af (2) = bf (3) = cg (a) = apple, g (b) = ball and g (c) =  cat. Show that fg and gof are invertible. Find f−1g−1 and gof−1and show that (gof)−1 = f 1o g−1


Consider f : R → R+ → [4, ∞) given by f(x) = x2 + 4. Show that f is invertible with inverse f−1 of f given by f−1 `(x)= sqrt (x-4)` where R+ is the set of all non-negative real numbers.


If f : R → R be defined by f(x) = x3 −3, then prove that f−1 exists and find a formula for f−1. Hence, find f−1(24) and f−1 (5).


If A = {1, 2, 3, 4} and B = {abcd}, define any four bijections from A to B. Also give their inverse functions.


If A = {abc} and B = {−2, −1, 0, 1, 2}, write the total number of one-one functions from A to B.


Let f  be a function from C (set of all complex numbers) to itself given by f(x) = x3. Write f−1 (−1).


If f : R → R is defined by f(x) = x2, find f−1 (−25).


Let \[f : \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \to R\]  be a function defined by f(x) = cos [x]. Write range (f).


If a function\[f : [2, \infty )\text{ to B defined by f}\left( x \right) = x^2 - 4x + 5\] is a bijection, then B =


If \[f : R \to R is given by f\left( x \right) = 3x - 5, then f^{- 1} \left( x \right)\] 

 


Mark the correct alternative in the following question:
If the set A contains 7 elements and the set B contains 10 elements, then the number one-one functions from A to B is


Mark the correct alternative in the following question:
Let f :  \[-\] \[\left\{ \frac{3}{5} \right\}\] \[\to\]  R be defined by f(x) = \[\frac{3x + 2}{5x - 3}\] Then,

 


Write about strlen() function.


Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(x, y): x is a person, y is the mother of x}


Let g(x) = x2 – 4x – 5, then ____________.


If N be the set of all-natural numbers, consider f: N → N such that f(x) = 2x, ∀ x ∈ N, then f is ____________.


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Based on the given information, f is best defined as:


Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.

Answer the following using the above information.

  • The function f: R → R defined by f(x) = x − 4 is ____________.

A function f: x → y is said to be one – one (or injective) if:


Difference between the greatest and least value of f(x) = `(1 + (cos^-1x)/π)^2 - (1 + (sin^-1x)/π)^2` is ______.


The domain of function is f(x) = `sqrt(-log_0.3(x - 1))/sqrt(x^2 + 2x + 8)` is ______.


Let f(n) = `[1/3 + (3n)/100]n`, where [n] denotes the greatest integer less than or equal to n. Then `sum_(n = 1)^56f(n)` is equal to ______.


The function f(x) = [x], where [x] denotes the greatest integer less than or equal to x; is continuous at ______.


Which one of the following graphs is a function of x?

Graph A Graph B

If f : R `rightarrow` R is defined by `f(x) = (2x - 7)/4`, show that f(x) is one-one and onto.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×