Advertisements
Advertisements
प्रश्न
Let
\[A = \left\{ x \in R : x \geq 1 \right\}\] The inverse of the function,
\[f : A \to A\] given by
\[f\left( x \right) = 2^{x \left( x - 1 \right)} , is\]
विकल्प
\[\left( \frac{1}{2} \right)^{x \left( x - 1 \right)}\]
\[\frac{1}{2} \left\{ 1 + \sqrt{1 + 4 \log_2 x} \right\}\]
\[\frac{1}{2} \left\{ 1 - \sqrt{1 + 4 \log_2 x} \right\}\]
not defined
उत्तर
\[\text{Let} f^{- 1} \left( x \right) = y . . . \left( 1 \right)\]
\[ \Rightarrow f\left( y \right) = x\]
\[ \Rightarrow 2^{y\left( y - 1 \right)} = x\]
\[ \Rightarrow 2^{y^2 - y} = x\]
\[ \Rightarrow y^2 - y = \log_2 x\]
\[ \Rightarrow y^2 - y + \frac{1}{4} = \log_2 x + \frac{1}{4}\]
\[ \Rightarrow \left( y - \frac{1}{2} \right)^2 = \frac{4 \log_2 x + 1}{4}\]
\[ \Rightarrow y - \frac{1}{2} = \pm \frac{\sqrt{4 \log_2 x + 1}}{2}\]
\[ \Rightarrow y = \frac{1}{2} \pm \frac{\sqrt{4 \log_2 x + 1}}{2}\]
\[ \Rightarrow y = \frac{1}{2} + \frac{\sqrt{4 \log_2 x + 1}}{2} \left( \because y \geq1 \right)\]
\[So, f^{- 1} \left( x \right) = \frac{1}{2}(1 + \sqrt{1 + 4 \log_2 x} ) [\text{from}\left( 1 \right)]\]
So, the answer is (b).
APPEARS IN
संबंधित प्रश्न
Following the case, state whether the function is one-one, onto, or bijective. Justify your answer.
f: R → R defined by f(x) = 1 + x2
Let S = {a, b, c} and T = {1, 2, 3}. Find F−1 of the following functions F from S to T, if it exists.
F = {(a, 3), (b, 2), (c, 1)}
Give an example of a function which is not one-one but onto ?
Let f : R → R and g : R → R be defined by f(x) = x2 and g(x) = x + 1. Show that fog ≠ gof.
If f : A → B and g : B → C are onto functions, show that gof is a onto function.
Let A = R - {3} and B = R - {1}. Consider the function f : A → B defined by f(x) = `(x-2)/(x-3).`Show that f is one-one and onto and hence find f-1.
[CBSE 2012, 2014]
If f : A → A, g : A → A are two bijections, then prove that fog is an injection ?
Write whether f : R → R, given by `f(x) = x + sqrtx^2` is one-one, many-one, onto or into.
Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. State whether f is one-one or not.
Let f : R → R be the function defined by f(x) = 4x − 3 for all x ∈ R Then write f . [NCERT EXEMPLAR]
The function
\[f : R \to R\] defined by\[f\left( x \right) = \left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)\]
(a) one-one but not onto
(b) onto but not one-one
(c) both one and onto
(d) neither one-one nor onto
Let
\[f : R \to R\] be a function defined by
\[f : R \to R\] is defined by
\[f\left( x \right) = \frac{e^{x^2} - e^{- x^2}}{e^{x^2 + e^{- x^2}}} is\]
The function
A function f from the set of natural numbers to the set of integers defined by
\[f\left( n \right)\begin{cases}\frac{n - 1}{2}, & \text{when n is odd} \\ - \frac{n}{2}, & \text{when n is even}\end{cases}\]
Mark the correct alternative in the following question:
Let A = {1, 2, ... , n} and B = {a, b}. Then the number of subjections from A into B is
Mark the correct alternative in the following question:
If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is
Mark the correct alternative in the following question:
If the set A contains 7 elements and the set B contains 10 elements, then the number one-one functions from A to B is
If A = {a, b, c, d} and f = {a, b), (b, d), (c, a), (d, c)}, show that f is one-one from A onto A. Find f–1
Show that the function f: R → R defined by f(x) = `x/(x^2 + 1)`, ∀ ∈ + R , is neither one-one nor onto
Let R be the set of real numbers and f: R → R be the function defined by f(x) = 4x + 5. Show that f is invertible and find f–1.
Let A be a finite set. Then, each injective function from A into itself is not surjective.
Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(a, b): a is a person, b is an ancestor of a}
Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not
f = {(1, 4), (1, 5), (2, 4), (3, 5)}
Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not
h = {(1,4), (2, 5), (3, 5)}
Let f: `[2, oo)` → R be the function defined by f(x) = x2 – 4x + 5, then the range of f is ______.
Let f: R → R be given by f(x) = tan x. Then f–1(1) is ______.
If f(x) = (4 – (x – 7)3}, then f–1(x) = ______.
The function f : A → B defined by f(x) = 4x + 7, x ∈ R is ____________.
Let f : R `->` R be a function defined by f(x) = x3 + 4, then f is ______.
The function f: R → R defined as f(x) = x3 is:
Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.
Answer the following using the above information.
- The function f: R → R defined by f(x) = x − 4 is ____________.
Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.
Answer the following questions using the above information.
- Let f: {1,2,3,....} → {1,4,9,....} be defined by f(x) = x2 is ____________.
A function f: x → y is said to be one – one (or injective) if:
Function f: R → R, defined by f(x) = `x/(x^2 + 1)` ∀ x ∈ R is not
If f: R→R is a function defined by f(x) = `[x - 1]cos((2x - 1)/2)π`, where [ ] denotes the greatest integer function, then f is ______.
The domain of function is f(x) = `sqrt(-log_0.3(x - 1))/sqrt(x^2 + 2x + 8)` is ______.
The function f(x) = [x], where [x] denotes the greatest integer less than or equal to x; is continuous at ______.
Write the domain and range (principle value branch) of the following functions:
f(x) = tan–1 x.