हिंदी

Let R be the set of real numbers and f: R → R be the function defined by f(x) = 4x + 5. Show that f is invertible and find f–1. - Mathematics

Advertisements
Advertisements

प्रश्न

Let R be the set of real numbers and f: R → R be the function defined by f(x) = 4x + 5. Show that f is invertible and find f–1.

योग

उत्तर

Here the function f : R → R is defined as f (x) = 4x + 5 = y (say). Then

4x = y – 5 or x = `(y - 5)/4`.

This leads to a function g: R → R defined as

g(y) = `(y - 5)/4`.

Therefore, (gof) (x) = g(f(x) = g(4x + 5)

= `(4x + 5 - 5)/4`

= x

or

gof = IR

Similarly (fog) (y) = f(g(y))

= `f((y - 5)/4)`

= `4((y - 5)/4) + 5`

= y

or

fog = IR

Hence f is invertible and f-1 = g which is given by `f^-1 (x) = (x - 5)/4`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Relations And Functions - Solved Examples [पृष्ठ ६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 1 Relations And Functions
Solved Examples | Q 15 | पृष्ठ ६

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Find the number of all onto functions from the set {1, 2, 3, …, n} to itself.


Which of the following functions from A to B are one-one and onto?

 f2 = {(2, a), (3, b), (4, c)} ; A = {2, 3, 4}, B = {abc}


Classify the following function as injection, surjection or bijection :

 f : Z → Z, defined by f(x) = x − 5 


If A = {1, 2, 3}, show that a one-one function f : A → A must be onto.


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = x and g(x) = |x| .


If f : A → B and g : B → C are one-one functions, show that gof is a one-one function.


Find fog and gof  if : f (x) = x+1, g(x) = `e^x`

.


If f(x) = |x|, prove that fof = f.


State with reason whether the following functions have inverse :

g : {5, 6, 7, 8} → {1, 2, 3, 4} with g = {(5, 4), (6, 3), (7, 4), (8, 2)}


If f : R → (−1, 1) defined by `f (x) = (10^x- 10^-x)/(10^x + 10 ^-x)` is invertible, find f−1.


If f : R → R is given by f(x) = x3, write f−1 (1).


Let f  be a function from C (set of all complex numbers) to itself given by f(x) = x3. Write f−1 (−1).


Let f : R → R+ be defined by f(x) = axa > 0 and a ≠ 1. Write f−1 (x).


If f : R → R is defined by f(x) = 3x + 2, find f (f (x)).


Let the function

\[f : R - \left\{ - b \right\} \to R - \left\{ 1 \right\}\]

\[f\left( x \right) = \frac{x + a}{x + b}, a \neq b .\text{Then},\]

 


Which of the following functions form Z to itself are bijections?

 

 

 
 

Which of the following functions from

\[A = \left\{ x : - 1 \leq x \leq 1 \right\}\]

to itself are bijections?

 

 

 


If a function\[f : [2, \infty )\text{ to B defined by f}\left( x \right) = x^2 - 4x + 5\] is a bijection, then B =


The function

\[f : R \to R, f\left( x \right) = x^2\]
 

The distinct linear functions that map [−1, 1] onto [0, 2] are


Let f: R → R be defined by f(x) = 3x – 4. Then f–1(x) is given by ______.


Let A = {0, 1} and N be the set of natural numbers. Then the mapping f: N → A defined by f(2n – 1) = 0, f(2n) = 1, ∀ n ∈ N, is onto.


Let g(x) = x2 – 4x – 5, then ____________.


Let A = R – {3}, B = R – {1}. Let f : A → B be defined by `"f"("x") = ("x" - 2)/("x" - 3)` Then, ____________.


Let f : R → R, g : R → R be two functions such that f(x) = 2x – 3, g(x) = x3 + 5. The function (fog)-1 (x) is equal to ____________.


The domain of the function `"f"("x") = 1/(sqrt ({"sin x"} + {"sin" ( pi + "x")}))` where {.} denotes fractional part, is


An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Let R: B → G be defined by R = { (b1,g1), (b2,g2),(b3,g1)}, then R is ____________.

A function f: x → y is said to be one – one (or injective) if:


Prove that the function f is surjective, where f: N → N such that `f(n) = {{:((n + 1)/2",", if "n is odd"),(n/2",", if  "n is even"):}` Is the function injective? Justify your answer.


The domain of function is f(x) = `sqrt(-log_0.3(x - 1))/sqrt(x^2 + 2x + 8)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×