Advertisements
Advertisements
प्रश्न
Let f : R → R+ be defined by f(x) = ax, a > 0 and a ≠ 1. Write f−1 (x).
उत्तर
APPEARS IN
संबंधित प्रश्न
Check the injectivity and surjectivity of the following function:
f: Z → Z given by f(x) = x2
Which of the following functions from A to B are one-one and onto?
f1 = {(1, 3), (2, 5), (3, 7)} ; A = {1, 2, 3}, B = {3, 5, 7}
Which of the following functions from A to B are one-one and onto?
f2 = {(2, a), (3, b), (4, c)} ; A = {2, 3, 4}, B = {a, b, c}
Which of the following functions from A to B are one-one and onto ?
f3 = {(a, x), (b, x), (c, z), (d, z)} ; A = {a, b, c, d,}, B = {x, y, z}.
Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x2
Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x3
Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = 3 − 4x
If A = {1, 2, 3}, show that a onto function f : A → A must be one-one.
Give examples of two one-one functions f1 and f2 from R to R, such that f1 + f2 : R → R. defined by (f1 + f2) (x) = f1 (x) + f2 (x) is not one-one.
Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of each of the following:
(i) an injective map from A to B
(ii) a mapping from A to B which is not injective
(iii) a mapping from A to B.
Find gof and fog when f : R → R and g : R → R is defined by f(x) = x and g(x) = |x| .
Find fog and gof if : f (x) = x2 g(x) = cos x .
Find fog and gof if : f (x) = |x|, g (x) = sin x .
State with reason whether the following functions have inverse :
f : {1, 2, 3, 4} → {10} with f = {(1, 10), (2, 10), (3, 10), (4, 10)}
If f : Q → Q, g : Q → Q are two functions defined by f(x) = 2 x and g(x) = x + 2, show that f and g are bijective maps. Verify that (gof)−1 = f−1 og −1.
Let A = R - {3} and B = R - {1}. Consider the function f : A → B defined by f(x) =
[CBSE 2012, 2014]
If f : A → A, g : A → A are two bijections, then prove that fog is an injection ?
If f : R → R is defined by f(x) = x2, find f−1 (−25).
Let
f-1 : Range of f →
Let f be an invertible real function. Write ( f-1 of ) (1) + ( f-1 of ) (2) +..... +( f-1 of ) (100 )
Let A = {1, 2, 3, 4} and B = {a, b} be two sets. Write the total number of onto functions from A to B.
Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. State whether f is one-one or not.
If a function g = {(1, 1), (2, 3), (3, 5), (4, 7)} is described by g(x) =
Let the function
Let
The function
(a) one-one but not onto
(b) onto but not one-one
(c) both one and onto
(d) neither one-one nor onto
Let
Let
Let A = ℝ − {3}, B = ℝ − {1}. Let f : A → B be defined by
(i) x, if f−1(x) = 4
(ii) f−1(7)
Let N be the set of natural numbers and the function f: N → N be defined by f(n) = 2n + 3 ∀ n ∈ N. Then f is ______.
The domain of the function f: R → R defined by f(x) =
For sets A, B and C, let f: A → B, g: B → C be functions such that g o f is surjective. Then g is surjective.
Let f: R → R be defined by f(x) =
The function f : R → R defined by f(x) = 3 – 4x is ____________.
Let f : R
Let n(A) = 4 and n(B) = 6, Then the number of one – one functions from 'A' to 'B' is:
Function f: R → R, defined by f(x) =
The solution set of the inequation log1/3(x2 + x + 1) + 1 > 0 is ______.