हिंदी

Let F : R → R+ Be Defined by F(X) = Ax, a > 0 and a ≠ 1. Write F−1 (X). - Mathematics

Advertisements
Advertisements

प्रश्न

Let f : R → R+ be defined by f(x) = axa > 0 and a ≠ 1. Write f−1 (x).

उत्तर

Letf1(x)=y...(1)
f(y)=x
ay=x
y=logax
f1(x)=logax[from (1)]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.5 [पृष्ठ ७३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.5 | Q 21 | पृष्ठ ७३

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Check the injectivity and surjectivity of the following function:

f: Z → Z given by f(x) = x2


Which of the following functions from A to B are one-one and onto?
 f1 = {(1, 3), (2, 5), (3, 7)} ; A = {1, 2, 3}, B = {3, 5, 7}


Which of the following functions from A to B are one-one and onto?

 f2 = {(2, a), (3, b), (4, c)} ; A = {2, 3, 4}, B = {abc}


 Which of the following functions from A to B are one-one and onto ?  

f3 = {(ax), (bx), (cz), (dz)} ; A = {abcd,}, B = {xyz}. 


Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x2


Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x3


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = 3 − 4x


If A = {1, 2, 3}, show that a onto function f : A → A must be one-one.


Give examples of two one-one functions f1 and f2 from R to R, such that f1 + f2 : R → R. defined by (f1 + f2) (x) = f1 (x) + f2 (x) is not one-one.


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of each of the following:
(i) an injective map from A to B
(ii) a mapping from A to B which is not injective
(iii) a mapping from A to B.


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = x and g(x) = |x| .


Find fog and gof  if : f (x) = x2 g(x) = cos x .


Find fog and gof  if : f (x) = |x|, g (x) = sin x .


State with reason whether the following functions have inverse :
f : {1, 2, 3, 4} → {10} with f = {(1, 10), (2, 10), (3, 10), (4, 10)}


If f : Q → Qg : Q → Q are two functions defined by f(x) = 2 x and g(x) = x + 2, show that f and g are bijective maps. Verify that (gof)−1 = f−1 og −1.


Let A = R - {3} and B = R - {1}. Consider the function f : A → B defined by f(x) = x-2x-3.Show that f is one-one and onto and hence find f-1.

                    [CBSE 2012, 2014]


If f : A → Ag : A → A are two bijections, then prove that fog is an injection ?


If f : R → R is defined by f(x) = x2, find f−1 (−25).


Let f:R-{-35} → R be a function defined as f (x)=2x5x+3. 

f-1 : Range of f → R-{-35}.


Let f be an invertible real function. Write ( f-1  of ) (1) + ( f-1  of ) (2) +..... +( f-1 of ) (100 )


Let A = {1, 2, 3, 4} and B = {ab} be two sets. Write the total number of onto functions from A to B.


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. State whether f is one-one or not.


If a function g = {(1, 1), (2, 3), (3, 5), (4, 7)} is described by g(x) = αx+β  then find the values of α and β . [NCERT EXEMPLAR]


Let the function

f:R{b}R{1}

f(x)=x+ax+b,ab.Then,

 


Let

A={x:1x1}andf:AA such that f(x)=x|x|

 


The function

f:RR defined byf(x)=(x1)(x2)(x3)

(a) one-one but not onto
(b) onto but not one-one
(c) both one and onto
(d) neither one-one nor onto


Let

f:R{n}R

f(x)=xmxn,where mn. Then,
 

Let f(x)=x3 be a function with domain {0, 1, 2, 3}. Then domain of f1 is ______.


Let A = ℝ − {3}, B = ℝ − {1}. Let f : A → B be defined by f(x)=x2x3,xA Show that f is bijective. Also, find
(i) x, if f−1(x) = 4
(ii) f−1(7)


Let N be the set of natural numbers and the function f: N → N be defined by f(n) = 2n + 3 ∀ n ∈ N. Then f is ______.


The domain of the function f: R → R defined by f(x) = x2-3x+2 is ______


For sets A, B and C, let f: A → B, g: B → C be functions such that g o f is surjective. Then g is surjective.


Let f: R → R be defined by f(x) = 1x ∀ x ∈ R. Then f is ______.


The function f : R → R defined by f(x) = 3 – 4x is ____________.


Let f : R R be a function defined by f(x) = x3 + 4, then f is ______.


Let n(A) = 4 and n(B) = 6, Then the number of one – one functions from 'A' to 'B' is:


Function f: R → R, defined by f(x) = xx2+1 ∀ x ∈ R is not


The solution set of the inequation log1/3(x2 + x + 1) + 1 > 0 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.