Advertisements
Advertisements
प्रश्न
Let A = ℝ − {3}, B = ℝ − {1}. Let f : A → B be defined by \[f\left( x \right) = \frac{x - 2}{x - 3}, \forall x \in A\] Show that f is bijective. Also, find
(i) x, if f−1(x) = 4
(ii) f−1(7)
उत्तर
We have,
A = R \[-\] {3} and B = R \[-\] {1}
The function f : A \[\to\] B defined by f(x) = \[\frac{x - 2}{x - 3}\]
\[\text { Let }x, y \text { in A such that }f\left( x \right) = f\left( y \right) . \text { Then }, \]
\[\frac{x - 2}{x - 3} = \frac{y - 2}{y - 3}\]
\[ \Rightarrow xy - 3x - 2y + 6 = xy - 2x - 3y + 6\]
\[ \Rightarrow - x = - y\]
\[ \Rightarrow x = y\]
\[ \therefore\text { f is one - one } .\]
\[\text { Let y } \in B . \text { Then, y } \neq 1 . \]
\[\text { The function f is onto if there exists } x \text { in A such that f }\left( x \right) = y . \]
\[\text {Now,}\]
\[f\left( x \right) = y\]
\[ \Rightarrow \frac{x - 2}{x - 3} = y\]
\[ \Rightarrow x - 2 = xy - 3y\]
\[ \Rightarrow x - xy = 2 - 3y\]
\[ \Rightarrow x\left( 1 - y \right) = 2 - 3y\]
\[ \Rightarrow x = \frac{2 - 3y}{1 - y} \in A \left[ y \neq 1 \right]\]
\[\text { Thus, for any } y \text { in B, there exists } \frac{2 - 3y}{1 - y} \text { in A such that }\]
\[f\left( \frac{2 - 3y}{1 - y} \right) = \frac{\left( \frac{2 - 3y}{1 - y} \right) - 2}{\left( \frac{2 - 3y}{1 - y} \right) - 3} = \frac{2 - 3y - 2 + 2y}{2 - 3y - 3 + 3y} = \frac{- y}{- 1} = y\]
\[ \therefore \text { f is onto } .\]
\[\text { So, f is one - one and onto fucntion } . \]
\[\text { Now }, \]
\[\text { As,} x = \left( \frac{2 - 3y}{1 - y} \right)\]
\[\text { So }, f^{- 1} \left( x \right) = \left( \frac{2 - 3x}{1 - x} \right) = \frac{3x - 2}{x - 1}\]
Therefore,f is bijective.
(i) \[f^{- 1} \left( x \right) = 4\]
\[ \Rightarrow \frac{3x - 2}{x - 1} = 4\]
\[ \Rightarrow 3x - 2 = 4x - 4\]
\[ \Rightarrow x = 2\]
\[f^{- 1} \left( x \right) = \frac{3x - 2}{x - 1}\]
\[ \Rightarrow f^{- 1} \left( 7 \right) = \frac{3\left( 7 \right) - 2}{7 - 1} = \frac{19}{6}\]
APPEARS IN
संबंधित प्रश्न
Let f: N → N be defined by f(n) = `{((n+1)/2, ",if n is odd"),(n/2,",n is even"):}` for all n ∈ N.
State whether the function f is bijective. Justify your answer.
Let A = R − {3} and B = R − {1}. Consider the function f: A → B defined by `f(x) = ((x- 2)/(x -3))`. Is f one-one and onto? Justify your answer.
Let A = {−1, 0, 1, 2}, B = {−4, −2, 0, 2} and f, g: A → B be functions defined by f(x) = x2 − x, x ∈ A and g(x) = `2|x - 1/2|- 1, x in A`. Are f and g equal?
Justify your answer. (Hint: One may note that two functions f: A → B and g: A → B such that f(a) = g(a) ∀ a ∈ A are called equal functions).
Prove that the function f : N → N, defined by f(x) = x2 + x + 1, is one-one but not onto
Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x2
If f : R → R be the function defined by f(x) = 4x3 + 7, show that f is a bijection.
Suppose f1 and f2 are non-zero one-one functions from R to R. Is `f_1 / f^2` necessarily one - one? Justify your answer. Here,`f_1/f_2 : R → R is given by (f_1/f_2) (x) = (f_1(x))/(f_2 (x)) for all x in R .`
Find gof and fog when f : R → R and g : R → R is defined by f(x) = 8x3 and g(x) = x1/3.
Let f = {(1, −1), (4, −2), (9, −3), (16, 4)} and g = {(−1, −2), (−2, −4), (−3, −6), (4, 8)}. Show that gof is defined while fog is not defined. Also, find gof.
Give examples of two functions f : N → Z and g : Z → Z, such that gof is injective but gis not injective.
Find fog and gof if : f (x) = ex g(x) = loge x .
Find fog and gof if : f (x) = x+1, g(x) = `e^x`
.
Let f(x) = x2 + x + 1 and g(x) = sin x. Show that fog ≠ gof.
If f : A → A, g : A → A are two bijections, then prove that fog is an injection ?
Let M be the set of all 2 × 2 matrices with entries from the set R of real numbers. Then, the function f : M→ R defined by f(A) = |A| for every A ∈ M, is
A function f from the set of natural numbers to integers defined by
`{([n-1]/2," when n is odd" is ),(-n/2,when n is even ) :}`
Let f be an injective map with domain {x, y, z} and range {1, 2, 3}, such that exactly one of the following statements is correct and the remaining are false.
\[f\left( x \right) = 1, f\left( y \right) \neq 1, f\left( z \right) \neq 2 .\]
The value of
\[f^{- 1} \left( 1 \right)\] is
If the function\[f : R \to \text{A given by} f\left( x \right) = \frac{x^2}{x^2 + 1}\] is a surjection, then A =
Let \[f\left( x \right) = x^2 and g\left( x \right) = 2^x\] Then, the solution set of the equation
Let
\[A = \left\{ x \in R : x \geq 1 \right\}\] The inverse of the function,
\[f : A \to A\] given by
\[f\left( x \right) = 2^{x \left( x - 1 \right)} , is\]
Let \[f\left( x \right) = \frac{1}{1 - x} . \text{Then}, \left\{ f o \left( fof \right) \right\} \left( x \right)\]
If \[f : R \to \left( - 1, 1 \right)\] is defined by
\[f\left( x \right) = \frac{- x|x|}{1 + x^2}, \text{ then } f^{- 1} \left( x \right)\] equals
If \[f\left( x \right) = \sin^2 x\] and the composite function \[g\left( f\left( x \right) \right) = \left| \sin x \right|\] then g(x) is equal to
Write about strlen() function.
'If 'f' is a linear function satisfying f[x + f(x)] = x + f(x), then f(5) can be equal to:
Let f: R→R be a continuous function such that f(x) + f(x + 1) = 2, for all x ∈ R. If I1 = `int_0^8f(x)dx` and I2 = `int_(-1)^3f(x)dx`, then the value of I1 + 2I2 is equal to ______.
Let [x] denote the greatest integer ≤ x, where x ∈ R. If the domain of the real valued function f(x) = `sqrt((|[x]| - 2)/(|[x]| - 3)` is (–∞, a) ∪ [b, c) ∪ [4, ∞), a < b < c, then the value of a + b + c is ______.
The solution set of the inequation log1/3(x2 + x + 1) + 1 > 0 is ______.
Number of integral values of x satisfying the inequality `(3/4)^(6x + 10 - x^2) < 27/64` is ______.
Let A = {1, 2, 3, ..., 10} and f : A `rightarrow` A be defined as
f(k) = `{{:(k + 1, if k "is odd"),( k, if k "is even"):}`.
Then the number of possible functions g : A `rightarrow` A such that gof = f is ______.