हिंदी

Let F = {(1, −1), (4, −2), (9, −3), (16, 4)} and G = {(−1, −2), (−2, −4), (−3, −6), (4, 8)}. Show that Gof is Defined While Fog is Not Defined. Also, Find Gof. - Mathematics

Advertisements
Advertisements

प्रश्न

Let f = {(1, −1), (4, −2), (9, −3), (16, 4)} and g = {(−1, −2), (−2, −4), (−3, −6), (4, 8)}. Show that gof is defined while fog is not defined. Also, find gof.

उत्तर

f = {(1, −1), (4, −2), (9, −3), (16, 4)} and g = {(−1, −2), (−2, −4), (−3, −6), (4, 8)}
: {1, 4, 9, 16} → {-1, -2, -3, 4} and g : {-1, -2, -3, 4} → {-2, -4, -6, 8}

Co-domain of f = domain of g
So, gof exists and gof : {1, 4, 9, 16} → {-2, -4, -6, 8}

(gof) (1g (f (1)g (12

(gof) (4g (f (4))=g (24

(gof) (9g (f (9)g  (36

(gof) (16=g (f (16)=g (48

So, go(1, 2), (4, 4), (9, 6), (16, 8}

But the co-domain of g is not same as the domain of f.
So, fog does not exist.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.2 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.2 | Q 3 | पृष्ठ ४६

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Prove that the greatest integer function f: → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.


Let A and B be sets. Show that f: A × B → B × A such that (a, b) = (b, a) is bijective function.


Let A = {−1, 0, 1, 2}, B = {−4, −2, 0, 2} and f, g: A → B be functions defined by f(x) = x2 − x, x ∈ A and g(x) = `2|x - 1/2|- 1, x in A`. Are f and g equal?

Justify your answer. (Hint: One may note that two functions f: A → B and g: A → B such that f(a) = g(a) ∀ a ∈ A are called equal functions).


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = x3 + 1


If f : A → B is an injection, such that range of f = {a}, determine the number of elements in A.


If A = {1, 2, 3}, show that a onto function f : A → A must be one-one.


Show that f : R→ R, given by f(x) = x — [x], is neither one-one nor onto.


Let f : N → N be defined by

`f(n) = { (n+ 1, if n  is  odd),( n-1 , if n  is  even):}`

Show that f is a bijection. 

                      [CBSE 2012, NCERT]


Find gof and fog when f : R → R and g : R → R is defined by f(x) = 2x + 3 and  g(x) = x2 + 5 .


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = x2 + 2x − 3 and  g(x) = 3x − 4 .


Let A = {abc}, B = {u vw} and let f and g be two functions from A to B and from B to A, respectively, defined as :
f = {(av), (bu), (cw)}, g = {(ub), (va), (wc)}.
Show that f and g both are bijections and find fog and gof.


If f(x) = |x|, prove that fof = f.


Which of the following graphs represents a one-one function?


Let f  be a function from C (set of all complex numbers) to itself given by f(x) = x3. Write f−1 (−1).


If f : R → R defined by f(x) = 3x − 4 is invertible, then write f−1 (x).


Let A = {1, 2, 3, 4} and B = {ab} be two sets. Write the total number of onto functions from A to B.


What is the range of the function

`f (x) = ([x - 1])/(x -1) ?`


If a function g = {(1, 1), (2, 3), (3, 5), (4, 7)} is described by g(x) = \[\alpha x + \beta\]  then find the values of \[\alpha\] and \[ \beta\] . [NCERT EXEMPLAR]


If f(x) = 4 −( x - 7)3 then write f-1 (x).


\[f : Z \to Z\]  be given by

 ` f (x) = {(x/2, ", if  x is even" ) ,(0 , ", if  x  is  odd "):}`

Then,  f is


Let  \[f\left( x \right) = \frac{1}{1 - x} . \text{Then}, \left\{ f o \left( fof \right) \right\} \left( x \right)\]

 


If the function

\[f : R \to R\]  be such that

\[f\left( x \right) = x - \left[ x \right]\] where [x] denotes the greatest integer less than or equal to x, then \[f^{- 1} \left( x \right)\]

 


If  \[f\left( x \right) = \sin^2 x\] and the composite function   \[g\left( f\left( x \right) \right) = \left| \sin x \right|\] then g(x) is equal to


Mark the correct alternative in the following question:

Let f : → R be given by f(x) = tanx. Then, f-1(1) is

 

 


The domain of the function f: R → R defined by f(x) = `sqrt(x^2 - 3x + 2)` is ______


Consider the set A containing n elements. Then, the total number of injective functions from A onto itself is ______


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

f(x) = `x/2`


Using the definition, prove that the function f: A→ B is invertible if and only if f is both one-one and onto


Let f: R → R be the functions defined by f(x) = x3 + 5. Then f–1(x) is ______.


The number of bijective functions from set A to itself when A contains 106 elements is ____________.


Let R be a relation on the set L of lines defined by l1 R l2 if l1 is perpendicular to l2, then relation R is ____________.


Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let f: {1,2,3,....} → {1,4,9,....} be defined by f(x) = x2 is ____________.

Let f: R → R defined by f(x) = 3x. Choose the correct answer


A function f: x → y is said to be one – one (or injective) if:


'If 'f' is a linear function satisfying f[x + f(x)] = x + f(x), then f(5) can be equal to:


Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R then 'f' is


Let f: R→R be defined as f(x) = 2x – 1 and g: R – {1}→R be defined as g(x) = `(x - 1/2)/(x - 1)`. Then the composition function f (g(x)) is ______.


Let f: R→R be a continuous function such that f(x) + f(x + 1) = 2, for all x ∈ R. If I1 = `int_0^8f(x)dx` and I2 = `int_(-1)^3f(x)dx`, then the value of I1 + 2I2 is equal to ______.



The given function f : R → R is not ‘onto’ function. Give reason.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×