हिंदी

Let M Be the Set of All 2 × 2 Matrices with Entries from the Set R of Real Numbers. Then, the Function F : M → R Defined by F(A) = |A| for Every a ∈ M, is (A) One-one and onto (B) Neither One-one Nor - Mathematics

Advertisements
Advertisements

प्रश्न

Let M be the set of all 2 × 2 matrices with entries from the set R of real numbers. Then, the function f : M→ R defined by f(A) = |A| for every A ∈ M, is

 

विकल्प

  • one-one and onto

  • neither one-one nor onto

  • one-one but-not onto

  • onto but not one-one

MCQ

उत्तर

\[M = \left\{ A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}: a, b, c, d \in R \right\}\]
\[f: M \to \text{R is given by}f\left( A \right)=\left| A \right|\]

Injectivity:

\[f\left( \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix} \right) = \begin{vmatrix}0 & 0 \\ 0 & 0\end{vmatrix} = 0\]
\[\text{and} f\left( \begin{bmatrix}1 & 0 \\ 0 & 0\end{bmatrix} \right) = \begin{vmatrix}1 & 0 \\ 0 & 0\end{vmatrix} = 0\]
\[ \Rightarrow f\left( \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix} \right) = f\left( \begin{bmatrix}1 & 0 \\ 0 & 0\end{bmatrix} \right) = 0\]

So, f is not one-one.
Surjectivity :
Let y be an element of the co-domain, such that

\[f\left( A \right) = - y, A = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\]
\[ \Rightarrow \begin{vmatrix}a & b \\ c & d\end{vmatrix} = y\]
\[ \Rightarrow ad - bc = y\]
\[ \Rightarrow a, b, c, d \in R\]
\[ \Rightarrow A = \begin{bmatrix}a & b \\ c & d\end{bmatrix} \in M\]

⇒ f is onto.
So, the answer is (d).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.6 [पृष्ठ ७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.6 | Q 9 | पृष्ठ ७६

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Check the injectivity and surjectivity of the following function:

f: N → N given by f(x) = x2


Check the injectivity and surjectivity of the following function:

f: R → R given by f(x) = x2


Let A = R − {3} and B = R − {1}. Consider the function f: A → B defined by `f(x) = ((x- 2)/(x -3))`. Is f one-one and onto? Justify your answer.


Show that the function f: R → R given by f(x) = x3 is injective.


Give an example of a function which is neither one-one nor onto ?


Show that if f1 and f2 are one-one maps from R to R, then the product f1 × f2 : R → R defined by (f1 × f2) (x) = f1 (x) f2 (x) need not be one - one.


Give examples of two functions f : N → N and g : N → N, such that gof is onto but f is not onto.


 Find fog and gof  if  : f (x) = ex g(x) = loge x .


Find fog and gof  if : f(x)= x + 1, g (x) = 2x + 3 .


Find fog and gof  if : f(x) = c, c ∈ R, g(x) = sin `x^2`


Let  f  be any real function and let g be a function given by g(x) = 2x. Prove that gof = f + f.


  ` if  f : (-π/2 , π/2)` → R and g : [−1, 1]→ R be defined as f(x) = tan x and g(x) = `sqrt(1 - x^2)` respectively, describe fog and gof.


State with reason whether the following functions have inverse:

h : {2, 3, 4, 5} → {7, 9, 11, 13} with h = {(2, 7), (3, 9), (4, 11), (5, 13)}


Consider f : {1, 2, 3} → {abc} and g : {abc} → {apple, ball, cat} defined as f (1) = af (2) = bf (3) = cg (a) = apple, g (b) = ball and g (c) =  cat. Show that fg and gof are invertible. Find f−1g−1 and gof−1and show that (gof)−1 = f 1o g−1


If f : R → Rg : R → are given by f(x) = (x + 1)2 and g(x) = x2 + 1, then write the value of fog (−3).


Let f : R − {−1} → R − {1} be given by\[f\left( x \right) = \frac{x}{x + 1} . \text{Write } f^{- 1} \left( x \right)\]


Write the domain of the real function f defined by f(x) = `sqrt (25 -x^2)`   [NCERT EXEMPLAR]


Let\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = \text{B and C} = \left\{ x \in R : x \geq 0 \right\} and\]\[S = \left\{ \left( x, y \right) \in A \times B : x^2 + y^2 = 1 \right\} \text{and } S_0 = \left\{ \left( x, y \right) \in A \times C : x^2 + y^2 = 1 \right\}\]

Then,



Let 

\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = B\] Then, the mapping\[f : A \to \text{B given by} f\left( x \right) = x\left| x \right|\] is 

 


Which of the following functions form Z to itself are bijections?

 

 

 
 

The function

\[f : R \to R, f\left( x \right) = x^2\]
 

Mark the correct alternative in the following question:
If the set A contains 7 elements and the set B contains 10 elements, then the number one-one functions from A to B is


Which function is used to check whether a character is alphanumeric or not?


Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(a, b): a is a person, b is an ancestor of a}


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

f = {(1, 4), (1, 5), (2, 4), (3, 5)}


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

f(x) = `x/2`


Let f: R → R be the functions defined by f(x) = x3 + 5. Then f–1(x) is ______.


The function f : R → R defined by f(x) = 3 – 4x is ____________.


Let f : R → R be a function defined by f(x) `= ("e"^abs"x" - "e"^-"x")/("e"^"x" + "e"^-"x")` then f(x) is


Let A = R – {3}, B = R – {1}. Let f : A → B be defined by `"f"("x") = ("x" - 2)/("x" - 3)` Then, ____________.


Let f : R → R, g : R → R be two functions such that f(x) = 2x – 3, g(x) = x3 + 5. The function (fog)-1 (x) is equal to ____________.


The domain of the function `"f"("x") = 1/(sqrt ({"sin x"} + {"sin" ( pi + "x")}))` where {.} denotes fractional part, is


Range of `"f"("x") = sqrt((1 - "cos x") sqrt ((1 - "cos x")sqrt ((1 - "cos x")....infty))`


Let R be a relation on the set L of lines defined by l1 R l2 if l1 is perpendicular to l2, then relation R is ____________.


Difference between the greatest and least value of f(x) = `(1 + (cos^-1x)/π)^2 - (1 + (sin^-1x)/π)^2` is ______.


Let x is a real number such that are functions involved are well defined then the value of `lim_(t→0)[max{(sin^-1  x/3 + cos^-1  x/3)^2, min(x^2 + 4x + 7)}]((sin^-1t)/t)` where [.] is greatest integer function and all other brackets are usual brackets.


For x ∈ R, x ≠ 0, let f0(x) = `1/(1 - x)` and fn+1 (x) = f0(fn(x)), n = 0, 1, 2, .... Then the value of `f_100(3) + f_1(2/3) + f_2(3/2)` is equal to ______.


Let f(x) be a polynomial function of degree 6 such that `d/dx (f(x))` = (x – 1)3 (x – 3)2, then

Assertion (A): f(x) has a minimum at x = 1.

Reason (R): When `d/dx (f(x)) < 0, ∀  x ∈ (a - h, a)` and `d/dx (f(x)) > 0, ∀  x ∈ (a, a + h)`; where 'h' is an infinitesimally small positive quantity, then f(x) has a minimum at x = a, provided f(x) is continuous at x = a.


ASSERTION (A): The relation f : {1, 2, 3, 4} `rightarrow` {x, y, z, p} defined by f = {(1, x), (2, y), (3, z)} is a bijective function.

REASON (R): The function f : {1, 2, 3} `rightarrow` {x, y, z, p} such that f = {(1, x), (2, y), (3, z)} is one-one.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×