हिंदी

Write the Domain of the Real Function F Defined By F(X) = `Sqrt (25 -x^2)` - Mathematics

Advertisements
Advertisements

प्रश्न

Write the domain of the real function f defined by f(x) = `sqrt (25 -x^2)`   [NCERT EXEMPLAR]

उत्तर

  \[\text{We have}, \]
\[f\left( x \right) = \sqrt{25 - x^2}\]
\[\text{The function is defined only when } 25 - x^2 \geq 0\]
\[ \Rightarrow x^2 - 25 \leq 0\]
\[ \Rightarrow \left( x + 5 \right)\left( x - 5 \right) \leq 0\]
\[ \Rightarrow x \in \left[ - 5, 5 \right]\]
\[\text{So, the domain of the given function is} \left[ - 5, 5 \right] .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.5 [पृष्ठ ७४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.5 | Q 40 | पृष्ठ ७४

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Check the injectivity and surjectivity of the following function:

f: → N given by f(x) = x3


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Show that f is one-one.


Classify the following function as injection, surjection or bijection :

 f : Z → Z, defined by f(x) = x − 5 


Let A = {abc}, B = {u vw} and let f and g be two functions from A to B and from B to A, respectively, defined as :
f = {(av), (bu), (cw)}, g = {(ub), (va), (wc)}.
Show that f and g both are bijections and find fog and gof.


Let A = R - {3} and B = R - {1}. Consider the function f : A → B defined by f(x) = `(x-2)/(x-3).`Show that f is one-one and onto and hence find f-1.

                    [CBSE 2012, 2014]


Which one of the following graphs represents a function?


Let f  be a function from C (set of all complex numbers) to itself given by f(x) = x3. Write f−1 (−1).


 If f : R → R be defined by f(x) = x4, write f−1 (1).

Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. State whether f is one-one or not.


Let\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = \text{B and C} = \left\{ x \in R : x \geq 0 \right\} and\]\[S = \left\{ \left( x, y \right) \in A \times B : x^2 + y^2 = 1 \right\} \text{and } S_0 = \left\{ \left( x, y \right) \in A \times C : x^2 + y^2 = 1 \right\}\]

Then,



Let the function

\[f : R - \left\{ - b \right\} \to R - \left\{ 1 \right\}\]

\[f\left( x \right) = \frac{x + a}{x + b}, a \neq b .\text{Then},\]

 


Let 

\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = B\] Then, the mapping\[f : A \to \text{B given by} f\left( x \right) = x\left| x \right|\] is 

 


The range of the function

\[f\left( x \right) =^{7 - x} P_{x - 3}\]

 


Which of the following functions from

\[A = \left\{ x : - 1 \leq x \leq 1 \right\}\]

to itself are bijections?

 

 

 


If the function\[f : R \to \text{A given by} f\left( x \right) = \frac{x^2}{x^2 + 1}\] is a surjection, then A =

 

 


Let

\[f : R \to R\]  be a function defined by

\[f\left( x \right) = \frac{e^{|x|} - e^{- x}}{e^x + e^{- x}} . \text{Then},\]
 

A function f from the set of natural numbers to the set of integers defined by

\[f\left( n \right)\begin{cases}\frac{n - 1}{2}, & \text{when n is odd} \\ - \frac{n}{2}, & \text{when n is even}\end{cases}\]

 


The inverse of the function

\[f : R \to \left\{ x \in R : x < 1 \right\}\] given by

\[f\left( x \right) = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] is 

 


Let

\[A = \left\{ x \in R : x \leq 1 \right\} and f : A \to A\] be defined as

\[f\left( x \right) = x \left( 2 - x \right)\] Then,

\[f^{- 1} \left( x \right)\] is


If \[f : R \to R\] is given by \[f\left( x \right) = x^3 + 3, \text{then} f^{- 1} \left( x \right)\] is equal to

 


Mark the correct alternative in the following question:

If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is


Mark the correct alternative in the following question:
If the set A contains 7 elements and the set B contains 10 elements, then the number one-one functions from A to B is


Which function is used to check whether a character is alphanumeric or not?


Let N be the set of natural numbers and the function f: N → N be defined by f(n) = 2n + 3 ∀ n ∈ N. Then f is ______.


Let f: R → R be defined by f(x) = 3x – 4. Then f–1(x) is given by ______.


Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(a, b): a is a person, b is an ancestor of a}


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

f = {(1, 4), (1, 5), (2, 4), (3, 5)}


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

f(x) = `x/2`


Let A = {1, 2, 3, ...n} and B = {a, b}. Then the number of surjections from A into B is ______.


If f(x) = (4 – (x – 7)3}, then f–1(x) = ______.


Let A = {0, 1} and N be the set of natural numbers. Then the mapping f: N → A defined by f(2n – 1) = 0, f(2n) = 1, ∀ n ∈ N, is onto.


The function f : A → B defined by f(x) = 4x + 7, x ∈ R is ____________.


If N be the set of all-natural numbers, consider f: N → N such that f(x) = 2x, ∀ x ∈ N, then f is ____________.


An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Ravi wants to know among those relations, how many functions can be formed from B to G?

Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let f: {1,2,3,....} → {1,4,9,....} be defined by f(x) = x2 is ____________.

The domain of the function `cos^-1((2sin^-1(1/(4x^2-1)))/π)` is ______.


Let A = {1, 2, 3, ..., 10} and f : A `rightarrow` A be defined as

f(k) = `{{:(k + 1, if k  "is odd"),(     k, if k  "is even"):}`.

Then the number of possible functions g : A `rightarrow` A such that gof = f is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×