हिंदी

Let A = R - {3} And B = R - {1}. Consider the Function F : A → B Defined By F(X) = `(X-2)/(X-3).`Show That F Is One-one and onto and Hence Find F-1. - Mathematics

Advertisements
Advertisements

प्रश्न

Let A = R - {3} and B = R - {1}. Consider the function f : A → B defined by f(x) = `(x-2)/(x-3).`Show that f is one-one and onto and hence find f-1.

                    [CBSE 2012, 2014]

उत्तर

We have, 

A = R {3} and B = R - {1}

The function f : A → B defined by f(x) = `(x-2)/(x-3)`

Let x,y ∈ A such that f (x) = f (y). Then,

`(x-2)/(x-3) = (y-2)/(y-3)`

⇒ xy −3x − 2y + 6 = xy − 2x − 3y + 6

⇒ −x = −y

⇒ x = y

∴ f is one − one .

Let y ∈ B. Then, y ≠ 1. 

The function f is onto if there exists x ∈ A such that f (x) = y . Now,

f (x) = y

⇒ `(x-2)/(x-3) = y`

⇒ x - 2 = xy - 3y

⇒ x - xy = 2 - 3y

⇒ x (1 - y ) = 2 - 3y 

⇒ ` x = (2 - 3y)/ (1 - y ) in A       [ y ≠ 1]`

Thus, for any y ∈ B, there exists `(2-3y)/(1-y)` ∈ A such that

`f ((2 - 3y) / (1-y)) = (((2-3y)/(1-y))-2)/(((2-3y)/(1 - y))-3 `= `(2-3y - 2 +2y)/(2-3y -3 +3y) = (-y)/(-1) = y`

∴ f is onto.

So, f is one−one and onto fucntion.

Now,

` As , x = (2 - 3y)/(1- y)`

`so , f^-1 (x) = (2- 3x)/(1 - x) = (3x - 2)/(x-1)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.4 [पृष्ठ ६९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.4 | Q 13 | पृष्ठ ६९

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Find the number of all onto functions from the set {1, 2, 3, …, n} to itself.


Let S = {abc} and T = {1, 2, 3}. Find F−1 of the following functions F from S to T, if it exists.

F = {(a, 3), (b, 2), (c, 1)} 


Show that the function f: ℝ → ℝ defined by f(x) = `x/(x^2 + 1), ∀x in R`is neither one-one nor onto. Also, if g: ℝ → ℝ is defined as g(x) = 2x - 1. Find fog(x)


Which of the following functions from A to B are one-one and onto?
 f1 = {(1, 3), (2, 5), (3, 7)} ; A = {1, 2, 3}, B = {3, 5, 7}


Set of ordered pair of a function ? If so, examine whether the mapping is injective or surjective :{(ab) : a is a person, b is an ancestor of a


Let A = {1, 2, 3}. Write all one-one from A to itself.


Give examples of two surjective functions f1 and f2 from Z to Z such that f1 + f2 is not surjective.


Let R+ be the set of all non-negative real numbers. If f : R+ → R+ and g : R+ → R+ are defined as `f(x)=x^2` and `g(x)=+sqrtx` , find fog and gof. Are they equal functions ?


Let f : R → R and g : R → R be defined by f(x) = x2 and g(x) = x + 1. Show that fog ≠ gof.


Give examples of two functions f : N → N and g : N → N, such that gof is onto but f is not onto.


Find fog and gof  if : f (x) = |x|, g (x) = sin x .


Find fog and gof  if : f(x) = c, c ∈ R, g(x) = sin `x^2`


   if `f (x) = sqrt(1-x)` and g(x) = `log_e` x are two real functions, then describe functions fog and gof.


Let f be a real function given by f (x)=`sqrt (x-2)`
Find each of the following:

(i) fof
(ii) fofof
(iii) (fofof) (38)
(iv) f2

Also, show that fof ≠ `f^2` .


Consider the function f : R→  [-9 , ∞ ]given by f(x) = 5x2 + 6x - 9. Prove that f is invertible with -1 (y) = `(sqrt(54 + 5y) -3)/5`             [CBSE 2015]


If A = {abc} and B = {−2, −1, 0, 1, 2}, write the total number of one-one functions from A to B.


If f : C → C is defined by f(x) = (x − 2)3, write f−1 (−1).


If f : R → R is defined by f(x) = 10 x − 7, then write f−1 (x).


Let A = {1, 2, 3, 4} and B = {ab} be two sets. Write the total number of onto functions from A to B.


If f(x) = x + 7 and g(x) = x − 7, x ∈ R, write fog (7).


The function \[f : [0, \infty ) \to \text {R given by } f\left( x \right) = \frac{x}{x + 1} is\]

 

 


The range of the function

\[f\left( x \right) =^{7 - x} P_{x - 3}\]

 


A function f  from the set of natural numbers to integers defined by

`{([n-1]/2," when  n is  odd"   is ),(-n/2,when  n  is  even ) :}`

 

 


Which of the following functions from

\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\}\]

 


\[f : Z \to Z\]  be given by

 ` f (x) = {(x/2, ", if  x is even" ) ,(0 , ", if  x  is  odd "):}`

Then,  f is


If \[g \left( f \left( x \right) \right) = \left| \sin x \right| \text{and} f \left( g \left( x \right) \right) = \left( \sin \sqrt{x} \right)^2 , \text{then}\]

 


Let

 \[A = \left\{ x \in R : x \geq 1 \right\}\] The inverse of the function, 

\[f : A \to A\] given by

\[f\left( x \right) = 2^{x \left( x - 1 \right)} , is\]

 


Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R. Then, show that f is one-one.


Show that the function f: R → R defined by f(x) = `x/(x^2 + 1)`, ∀ ∈ + R , is neither one-one nor onto


Let R be the set of real numbers and f: R → R be the function defined by f(x) = 4x + 5. Show that f is invertible and find f–1.


Let f: R → R be defined by f(x) = x2 + 1. Then, pre-images of 17 and – 3, respectively, are ______.


Let C be the set of complex numbers. Prove that the mapping f: C → R given by f(z) = |z|, ∀ z ∈ C, is neither one-one nor onto.


If N be the set of all-natural numbers, consider f: N → N such that f(x) = 2x, ∀ x ∈ N, then f is ____________.


Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.

Answer the following using the above information.

  • The function f: R → R defined by f(x) = x − 4 is ____________.

Let f: R → R defined by f(x) = x4. Choose the correct answer


If log102 = 0.3010.log103 = 0.4771 then the number of ciphers after decimal before a significant figure comes in `(5/3)^-100` is ______.


Let f(n) = `[1/3 + (3n)/100]n`, where [n] denotes the greatest integer less than or equal to n. Then `sum_(n = 1)^56f(n)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×