हिंदी

Let A = {1, 2, 3, ...n} and B = {a, b}. Then the number of surjections from A into B is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

Let A = {1, 2, 3, ...n} and B = {a, b}. Then the number of surjections from A into B is ______.

विकल्प

  • nP2 

  • 2n – 2

  • 2n – 1

  • None of these

MCQ
रिक्त स्थान भरें

उत्तर

Let A = {1, 2, 3, ...n} and B = {a, b}. Then the number of surjections from A into B is 2n – 2.

Explanation:

Given that, A = {1, 2, 3, ...n} and B = {a, b}

If function is subjective then its range must be set B = {a, b}

Now number of onto functions

= Number of ways 'n' distinct objects can be distributed in two boxes 'a' and 'b' in such a way that no box remains empty.

Now for each object there are two options, either it is put in box 'a' or in box 'b'

So total number of ways of 'n' different objects = 2 × 2 × 2 ... n times = 2n

But in one case all the objects are put box 'a' and in one case all the objects are put in box 'b'

So, number of subjective functions = 2n – 2

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Relations And Functions - Exercise [पृष्ठ १४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 1 Relations And Functions
Exercise | Q 36 | पृष्ठ १४

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Let S = {abc} and T = {1, 2, 3}. Find F−1 of the following functions F from S to T, if it exists.

F = {(a, 2), (b, 1), (c, 1)}


Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x3


Classify the following function as injection, surjection or bijection :

f : Z → Z, defined by f(x) = x2 + x


Classify the following function as injection, surjection or bijection :

f : Q − {3} → Q, defined by `f (x) = (2x +3)/(x-3)`


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = `x/(x^2 +1)`


Let A = [-1, 1]. Then, discuss whether the following function from A to itself is one-one, onto or bijective : g(x) = |x|  


Find the number of all onto functions from the set A = {1, 2, 3, ..., n} to itself.


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of each of the following:
(i) an injective map from A to B
(ii) a mapping from A to B which is not injective
(iii) a mapping from A to B.


Let R+ be the set of all non-negative real numbers. If f : R+ → R+ and g : R+ → R+ are defined as `f(x)=x^2` and `g(x)=+sqrtx` , find fog and gof. Are they equal functions ?


Find fog and gof  if : f (x) = x2 g(x) = cos x .


Find fog and gof  if : f (x) = x+1, g (x) = sin x .


If f(x) = |x|, prove that fof = f.


If f(x) = 2x + 5 and g(x) = x2 + 1 be two real functions, then describe each of the following functions:
(1) fog
(2) gof
(3) fof
(4) f2
Also, show that fof ≠ f2


Let A and B be two sets, each with a finite number of elements. Assume that there is an injective map from A to B and that there is an injective map from B to A. Prove that there is a bijection from A to B.


Let A = {x ∈ R : −4 ≤ x ≤ 4 and x ≠ 0} and f : A → R be defined by \[f\left( x \right) = \frac{\left| x \right|}{x}\]Write the range of f.


Let f : R → R be defined as  `f (x) = (2x - 3)/4.` write fo f-1 (1) .


Let f be an invertible real function. Write ( f-1  of ) (1) + ( f-1  of ) (2) +..... +( f-1 of ) (100 )


If f(x) = x + 7 and g(x) = x − 7, x ∈ R, write fog (7).


What is the range of the function

`f (x) = ([x - 1])/(x -1) ?`


If the mapping f : {1, 3, 4} → {1, 2, 5} and g : {1, 2, 5} → {1, 3}, given by f = {(1, 2), (3, 5), (4, 1)} and g = {(2, 3), (5, 1), (1, 3)}, then write fog. [NCERT EXEMPLAR]


Which of the following functions form Z to itself are bijections?

 

 

 
 

If \[f : R \to R\] is given by \[f\left( x \right) = x^3 + 3, \text{then} f^{- 1} \left( x \right)\] is equal to

 


Let f: R → R be defined by f(x) = 3x – 4. Then f–1(x) is given by ______.


Let f: R → R be the function defined by f(x) = 2x – 3 ∀ x ∈ R. write f–1 


Let f : R → R be defind by f(x) = `1/"x"  AA  "x" in "R".` Then f is ____________.


An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Let R: B → G be defined by R = { (b1,g1), (b2,g2),(b3,g1)}, then R is ____________.

Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let f: N → N be defined by f(x) = x2 is ____________.

Let f: R→R be a polynomial function satisfying f(x + y) = f(x) + f(y) + 3xy(x + y) –1 ∀ x, y ∈ R and f'(0) = 1, then `lim_(x→∞)(f(2x))/(f(x)` is equal to ______.


Let f(x) be a polynomial of degree 3 such that f(k) = `-2/k` for k = 2, 3, 4, 5. Then the value of 52 – 10f(10) is equal to ______.


Which one of the following graphs is a function of x?

Graph A Graph B

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×