English

Show that the function f: R → R defined by f(x) = xx2+1, ∀ ∈ + R , is neither one-one nor onto - Mathematics

Advertisements
Advertisements

Question

Show that the function f: R → R defined by f(x) = `x/(x^2 + 1)`, ∀ ∈ + R , is neither one-one nor onto

Sum

Solution

For x1 , x2 ∈ R, consider

f(x1) = f(x2)

⇒ `x_1/(x_1^2 + 1) = x_2/(x_2^2 + 1)`

⇒ `x_1  x_2^2 + x_1 = x_2  x_1^2 + x_2`

⇒ x1 x2 (x2 – x1) = x2 – x1

⇒ x1 = x2 or x1 x2 = 1

We note that there are point, x1 and x2 with x1 ≠ x2 and if f(x1) = f(x2), for instance, If we take x1 = 2 and x2 = `1/2`, then we have f(x1) = `2/5` and f(x2) = `2/5` but `2 ≠ 1/2`.

Hence f is not one-one. Also, f is not onto for if so then for 1∈R ∃ x ∈ R such that f(x) = 1 which gives `x/(x^2 + 1)` = 1

But there is no such x in the domain R, since the equation x2 – x + 1 = 0 does not give any real value of x.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Relations And Functions - Solved Examples [Page 5]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 1 Relations And Functions
Solved Examples | Q 13 | Page 5

RELATED QUESTIONS

Check the injectivity and surjectivity of the following function:

f: N → N given by f(x) = x2


Following the case, state whether the function is one-one, onto, or bijective. Justify your answer.

f: → R defined by f(x) = 1 + x2


Let fR → be defined as f(x) = 10x + 7. Find the function gR → R such that g o f = f o = 1R.


Let fR → R be the Signum Function defined as

f(x) = `{(1,x>0), (0, x =0),(-1, x< 0):}`

and gR → be the Greatest Integer Function given by g(x) = [x], where [x] is greatest integer less than or equal to x. Then does fog and gof coincide in (0, 1]?


Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x3


Show that the exponential function f : R → R, given by f(x) = ex, is one-one but not onto. What happens if the co-domain is replaced by`R0^+` (set of all positive real numbers)?


Give examples of two surjective functions f1 and f2 from Z to Z such that f1 + f2 is not surjective.


Verify associativity for the following three mappings : f : N → Z0 (the set of non-zero integers), g : Z0 → Q and h : Q → R given by f(x) = 2xg(x) = 1/x and h(x) = ex.


If f(x) = |x|, prove that fof = f.


Let A = {x &epsis; R | −1 ≤ x ≤ 1} and let f : A → Ag : A → A be two functions defined by f(x) = x2 and g(x) = sin (π x/2). Show that g−1 exists but f−1 does not exist. Also, find g−1.


Let A and B be two sets, each with a finite number of elements. Assume that there is an injective map from A to B and that there is an injective map from B to A. Prove that there is a bijection from A to B.


If f : R → R is defined by f(x) = x2, write f−1 (25)


If f : R → R is defined by f(x) = x2, find f−1 (−25).


If f : R → R is defined by f(x) = 10 x − 7, then write f−1 (x).


Let `f : R - {- 3/5}` → R be a function defined as `f  (x) = (2x)/(5x +3).` 

f-1 : Range of f → `R -{-3/5}`.


Let f : R → R be defined as  `f (x) = (2x - 3)/4.` write fo f-1 (1) .


Let M be the set of all 2 × 2 matrices with entries from the set R of real numbers. Then, the function f : M→ R defined by f(A) = |A| for every A ∈ M, is

 


A function f  from the set of natural numbers to integers defined by

`{([n-1]/2," when  n is  odd"   is ),(-n/2,when  n  is  even ) :}`

 

 


If the function\[f : R \to \text{A given by} f\left( x \right) = \frac{x^2}{x^2 + 1}\] is a surjection, then A =

 

 


Let

\[f : R - \left\{ n \right\} \to R\]

\[f\left( x \right) = \frac{x - m}{x - n}, \text{where} \ m \neq n .\] Then,
 

Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] Then, for what value of α is \[f \left( f\left( x \right) \right) = x?\]

 


Write about strcmp() function.


Set A has 3 elements and the set B has 4 elements. Then the number of injective mappings that can be defined from A to B is ______.


The smallest integer function f(x) = [x] is ____________.


Which of the following functions from Z into Z is bijective?


Given a function If as f(x) = 5x + 4, x ∈ R. If g : R → R is inverse of function ‘f then


Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R then 'f' is


If f: R→R is a function defined by f(x) = `[x - 1]cos((2x - 1)/2)π`, where [ ] denotes the greatest integer function, then f is ______.


Consider a set containing function A= {cos–1cosx, sin(sin–1x), sinx((sinx)2 – 1), etan{x}, `e^(|cosx| + |sinx|)`, sin(tan(cosx)), sin(tanx)}. B, C, D, are subsets of A, such that B contains periodic functions, C contains even functions, D contains odd functions then the value of n(B ∩ C) + n(B ∩ D) is ______ where {.} denotes the fractional part of functions)


Let f(x) = ax (a > 0) be written as f(x) = f1(x) + f2(x), where f1(x) is an even function and f2(x) is an odd function. Then f1(x + y) + f1(x – y) equals ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×