Advertisements
Advertisements
Question
Let A = {x &epsis; R | −1 ≤ x ≤ 1} and let f : A → A, g : A → A be two functions defined by f(x) = x2 and g(x) = sin (π x/2). Show that g−1 exists but f−1 does not exist. Also, find g−1.
Solution
f is not one-one because
f (−1) = (−1)2 = 1
and f (1) = 12 = 1
⇒ -1 and 1 have the same image under f.
⇒ f is not a bijection.
So, f -1 does not exist.
Injectivity of g:
Let x and y be any two elements in the domain (A), such that
g (x) = g (y)
⇒ `sin ((πx)/2) = sin ((πy)/2) `
⇒ `((πx)/2) = ((πy)/2)`
⇒ x = y
So, g is one-one.
Surjectivity of g :
Range of g = ` [ sin ((π(-1))/2) , sin ((π(1))/2) ]`
` = [ sin ((-π)/2) , sin (π/2) ]` = [−1, 1] = A(co-domain of g)
⇒ g is onto.
⇒ g is a bijection.
So, g-1 exists.
Also,
let g−1 (x) = y ...(1)
⇒ g (y) = x
⇒ `sin ((xy)/2) = x`
⇒ `y = 2/π sin^-1 x `
⇒ `g^-1 (x) = 2/π sin^-1 x` [from (1)]
APPEARS IN
RELATED QUESTIONS
Show that the Signum Function f: R → R, given by `f(x) = {(1, if x > 0), (0, if x = 0), (-1, if x < 0):}` is neither one-one nor onto
Show that the function f: ℝ → ℝ defined by f(x) = `x/(x^2 + 1), ∀x in R`is neither one-one nor onto. Also, if g: ℝ → ℝ is defined as g(x) = 2x - 1. Find fog(x)
If the function `f(x) = sqrt(2x - 3)` is invertible then find its inverse. Hence prove that `(fof^(-1))(x) = x`
Give an example of a function which is one-one but not onto ?
Classify the following function as injection, surjection or bijection :
f : Z → Z, defined by f(x) = x2 + x
Let A = [-1, 1]. Then, discuss whether the following functions from A to itself is one-one, onto or bijective : h(x) = x2
Find the number of all onto functions from the set A = {1, 2, 3, ..., n} to itself.
Give examples of two one-one functions f1 and f2 from R to R, such that f1 + f2 : R → R. defined by (f1 + f2) (x) = f1 (x) + f2 (x) is not one-one.
Let f = {(1, −1), (4, −2), (9, −3), (16, 4)} and g = {(−1, −2), (−2, −4), (−3, −6), (4, 8)}. Show that gof is defined while fog is not defined. Also, find gof.
Find fog and gof if : f (x) = x+1, g(x) = `e^x`
.
If f(x) = |x|, prove that fof = f.
A function f : R → R is defined as f(x) = x3 + 4. Is it a bijection or not? In case it is a bijection, find f−1 (3).
Consider the function f : R+ → [-9 , ∞ ]given by f(x) = 5x2 + 6x - 9. Prove that f is invertible with f -1 (y) = `(sqrt(54 + 5y) -3)/5` [CBSE 2015]
If f : R → R is given by f(x) = x3, write f−1 (1).
If f(x) = x + 7 and g(x) = x − 7, x ∈ R, write fog (7).
If f : R → R is defined by f(x) = 3x + 2, find f (f (x)).
Write the domain of the real function f defined by f(x) = `sqrt (25 -x^2)` [NCERT EXEMPLAR]
If f(x) = 4 −( x - 7)3 then write f-1 (x).
Let
\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = B\] Then, the mapping\[f : A \to \text{B given by} f\left( x \right) = x\left| x \right|\] is
The range of the function
\[f\left( x \right) =^{7 - x} P_{x - 3}\]
Which of the following functions form Z to itself are bijections?
Which of the following functions from
to itself are bijections?
Let
\[A = \left\{ x : - 1 \leq x \leq 1 \right\} \text{and} f : A \to \text{A such that f}\left( x \right) = x|x|\]
Let \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] Then, for what value of α is \[f \left( f\left( x \right) \right) = x?\]
Mark the correct alternative in the following question:
Let f : R → R be given by f(x) = tanx. Then, f-1(1) is
Let A = ℝ − {3}, B = ℝ − {1}. Let f : A → B be defined by \[f\left( x \right) = \frac{x - 2}{x - 3}, \forall x \in A\] Show that f is bijective. Also, find
(i) x, if f−1(x) = 4
(ii) f−1(7)
A function f: R→ R defined by f(x) = `(3x) /5 + 2`, x ∈ R. Show that f is one-one and onto. Hence find f−1.
Let f, g: R → R be two functions defined as f(x) = |x| + x and g(x) = x – x ∀ x ∈ R. Then, find f o g and g o f
If f: R → R is defined by f(x) = x2 – 3x + 2, write f(f (x))
Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:
k(x) = x2
Let f: `[2, oo)` → R be the function defined by f(x) = x2 – 4x + 5, then the range of f is ______.
The function f : A → B defined by f(x) = 4x + 7, x ∈ R is ____________.
Let f: R → R defined by f(x) = 3x. Choose the correct answer
Consider a function f: `[0, pi/2] ->` R, given by f(x) = sinx and `g[0, pi/2] ->` R given by g(x) = cosx then f and g are
Prove that the function f is surjective, where f: N → N such that `f(n) = {{:((n + 1)/2",", if "n is odd"),(n/2",", if "n is even"):}` Is the function injective? Justify your answer.
Let x is a real number such that are functions involved are well defined then the value of `lim_(t→0)[max{(sin^-1 x/3 + cos^-1 x/3)^2, min(x^2 + 4x + 7)}]((sin^-1t)/t)` where [.] is greatest integer function and all other brackets are usual brackets.
Let f(n) = `[1/3 + (3n)/100]n`, where [n] denotes the greatest integer less than or equal to n. Then `sum_(n = 1)^56f(n)` is equal to ______.
ASSERTION (A): The relation f : {1, 2, 3, 4} `rightarrow` {x, y, z, p} defined by f = {(1, x), (2, y), (3, z)} is a bijective function.
REASON (R): The function f : {1, 2, 3} `rightarrow` {x, y, z, p} such that f = {(1, x), (2, y), (3, z)} is one-one.