मराठी

Let a = {X andEpsis; R | −1 ≤ X ≤ 1} and Let F : a → A, G : a → a Be Two Functions Defined by F(X) = X2 and G(X) = Sin (π X/2). Show that G−1 Exists but F−1 Does Not Exist. Also, Find G−1. - Mathematics

Advertisements
Advertisements

प्रश्न

Let A = {x &epsis; R | −1 ≤ x ≤ 1} and let f : A → Ag : A → A be two functions defined by f(x) = x2 and g(x) = sin (π x/2). Show that g−1 exists but f−1 does not exist. Also, find g−1.

उत्तर

f is not one-one because

f (−1) = (−1)2 = 1

and f (1) = 12 = 1

⇒ -1 and 1 have the same image under f.

⇒ f is not a bijection.
So, f -1 does not exist.

Injectivity of g:

Let x and y be any two elements in the domain (A), such that

g (x) = g (y)

⇒ `sin   ((πx)/2) = sin ((πy)/2) `

⇒ `((πx)/2) = ((πy)/2)`

⇒ x = y

So, g is one-one.

Surjectivity of g :

Range of g = ` [ sin  ((π(-1))/2) , sin  ((π(1))/2) ]`

` =  [ sin  ((-π)/2) , sin  (π/2) ]` = [−1, 1] = A(co-domain of g)

⇒ g is onto.
⇒ g is a bijection.
So, g-1 exists.

Also,

let g−1 (x) = y                      ...(1)

⇒ g (y) = x

⇒ `sin  ((xy)/2) = x`

⇒ `y = 2/π  sin^-1  x `

⇒ `g^-1 (x) = 2/π  sin^-1 x`         [from (1)]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Functions - Exercise 2.4 [पृष्ठ ६९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 2 Functions
Exercise 2.4 | Q 20 | पृष्ठ ६९

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Check the injectivity and surjectivity of the following function:

f: → N given by f(x) = x3


Check the injectivity and surjectivity of the following function:

f: Z → Z given by f(x) = x3


Let f: N → N be defined by f(n) = `{((n+1)/2, ",if n is odd"),(n/2,",n is even"):}` for all n ∈ N.

State whether the function f is bijective. Justify your answer.


Let A = R − {3} and B = R − {1}. Consider the function f: A → B defined by `f(x) = ((x- 2)/(x -3))`. Is f one-one and onto? Justify your answer.


Find the number of all onto functions from the set {1, 2, 3, …, n} to itself.


Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x3


If A = {1, 2, 3}, show that a onto function f : A → A must be one-one.


Find gof and fog when f : R → R and g : R → R is  defined by  f(x) = 8x3 and  g(x) = x1/3.


Find fog and gof  if : f(x) = `x^2` + 2 , g (x) = 1 − `1/ (1-x)`.


If f(x) = |x|, prove that fof = f.


State with reason whether the following functions have inverse :
f : {1, 2, 3, 4} → {10} with f = {(1, 10), (2, 10), (3, 10), (4, 10)}


State with reason whether the following functions have inverse:

h : {2, 3, 4, 5} → {7, 9, 11, 13} with h = {(2, 7), (3, 9), (4, 11), (5, 13)}


Show that the function f : Q → Q, defined by f(x) = 3x + 5, is invertible. Also, find f−1


A function f : R → R is defined as f(x) = x3 + 4. Is it a bijection or not? In case it is a bijection, find f−1 (3).


If A = {1, 2, 3, 4} and B = {abcd}, define any four bijections from A to B. Also give their inverse functions.


If f : R → R is defined by f(x) = x2, write f−1 (25)


Let A = {1, 2, 3, 4} and B = {ab} be two sets. Write the total number of onto functions from A to B.


If f : R → R is defined by f(x) = 3x + 2, find f (f (x)).


Let f : R → R be the function defined by f(x) = 4x − 3 for all x ∈ R Then write f .   [NCERT EXEMPLAR]


\[f : R \to R \text{given by} f\left( x \right) = x + \sqrt{x^2} \text{ is }\]

 

 


 \[f : A \to \text{B given by } 3^{ f\left( x \right)} + 2^{- x} = 4\] is a bijection, then

 

 

 

 


Let M be the set of all 2 × 2 matrices with entries from the set R of real numbers. Then, the function f : M→ R defined by f(A) = |A| for every A ∈ M, is

 


The  function f : [-1/2, 1/2, 1/2] → [-π /2,π/2], defined by f (x) = `sin^-1` (3x - `4x^3`), is

 


Let  \[f\left( x \right) = x^2 and g\left( x \right) = 2^x\] Then, the solution set of the equation

\[fog \left( x \right) = gof \left( x \right)\] is 



If  \[F : [1, \infty ) \to [2, \infty )\] is given by

\[f\left( x \right) = x + \frac{1}{x}, then f^{- 1} \left( x \right)\]

 


If \[f : R \to R\] is given by \[f\left( x \right) = x^3 + 3, \text{then} f^{- 1} \left( x \right)\] is equal to

 


Let R be the set of real numbers and f: R → R be the function defined by f(x) = 4x + 5. Show that f is invertible and find f–1.


Using the definition, prove that the function f: A→ B is invertible if and only if f is both one-one and onto


Let f : [0, ∞) → [0, 2] be defined by `"f" ("x") = (2"x")/(1 + "x"),` then f is ____________.


Let f : R `->` R be a function defined by f(x) = x3 + 4, then f is ______.


A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever


Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:

R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}

  • Mr. ’X’ and his wife ‘W’ both exercised their voting right in the general election-2019, Which of the following is true?

Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.

Answer the following using the above information.

  • The function f: R → R defined by f(x) = x − 4 is ____________.

If f; R → R f(x) = 10x + 3 then f–1(x) is:


Let f: R→R be defined as f(x) = 2x – 1 and g: R – {1}→R be defined as g(x) = `(x - 1/2)/(x - 1)`. Then the composition function f (g(x)) is ______.


Number of integral values of x satisfying the inequality `(3/4)^(6x + 10 - x^2) < 27/64` is ______.


Difference between the greatest and least value of f(x) = `(1 + (cos^-1x)/π)^2 - (1 + (sin^-1x)/π)^2` is ______.


Let f(x) = ax (a > 0) be written as f(x) = f1(x) + f2(x), where f1(x) is an even function and f2(x) is an odd function. Then f1(x + y) + f1(x – y) equals ______.


Let f(n) = `[1/3 + (3n)/100]n`, where [n] denotes the greatest integer less than or equal to n. Then `sum_(n = 1)^56f(n)` is equal to ______.


Let S = {1, 2, 3, 4, 5, 6, 7}. Then the number of possible functions f: S `rightarrow` S such that f(m.n) = f(m).f(n) for every m, n ∈ S and m.n ∈ S is equal to ______.


ASSERTION (A): The relation f : {1, 2, 3, 4} `rightarrow` {x, y, z, p} defined by f = {(1, x), (2, y), (3, z)} is a bijective function.

REASON (R): The function f : {1, 2, 3} `rightarrow` {x, y, z, p} such that f = {(1, x), (2, y), (3, z)} is one-one.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×