मराठी

If F : R → R is Defined by F(X) = X2, Write F−1 (25) - Mathematics

Advertisements
Advertisements

प्रश्न

If f : R → R is defined by f(x) = x2, write f−1 (25)

उत्तर

Let f(25=x            ... (1)

⇒ (x25

⇒ x25

⇒ x− 25 0

⇒ (x5(x+50

⇒ ±5

⇒ f(25{5, 5}       [from (1)]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Functions - Exercise 2.5 [पृष्ठ ७३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 2 Functions
Exercise 2.5 | Q 6 | पृष्ठ ७३

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Let S = {abc} and T = {1, 2, 3}. Find F−1 of the following functions F from S to T, if it exists.

F = {(a, 2), (b, 1), (c, 1)}


Give an example of a function which is one-one but not onto ?


Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x2


Classify the following function as injection, surjection or bijection :
f : R → R, defined by f(x) = 5x3 + 4


If f : A → B is an injection, such that range of f = {a}, determine the number of elements in A.


Let A = [-1, 1]. Then, discuss whether the following function from A to itself is one-one, onto or bijective : g(x) = |x|  


Find the number of all onto functions from the set A = {1, 2, 3, ..., n} to itself.


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = x and g(x) = |x| .


Let f = {(3, 1), (9, 3), (12, 4)} and g = {(1, 3), (3, 3) (4, 9) (5, 9)}. Show that gof and fog are both defined. Also, find fog and gof.


Let A = {abc}, B = {u vw} and let f and g be two functions from A to B and from B to A, respectively, defined as :
f = {(av), (bu), (cw)}, g = {(ub), (va), (wc)}.
Show that f and g both are bijections and find fog and gof.


If f : A → B and g : B → C are onto functions, show that gof is a onto function.


Find fog and gof  if : f (x) = x+1, g (x) = sin x .


Find fog and gof  if : f(x) = `x^2` + 2 , g (x) = 1 − `1/ (1-x)`.


Let fgh be real functions given by f(x) = sin xg (x) = 2x and h (x) = cos x. Prove that fog = go (fh).


if f (x) = `sqrt (x +3) and  g (x) = x ^2 + 1` be two real functions, then find fog and gof.


Show that the function f : Q → Q, defined by f(x) = 3x + 5, is invertible. Also, find f−1


Consider f : R+ → [−5, ∞) given by f(x) = 9x2 + 6x − 5. Show that f is invertible with `f^-1 (x) = (sqrt (x +6)-1)/3 .`


If A = {1, 2, 3} and B = {ab}, write the total number of functions from A to B.


Let C denote the set of all complex numbers. A function f : C → C is defined by f(x) = x3. Write f−1(1).


Let f be an invertible real function. Write ( f-1  of ) (1) + ( f-1  of ) (2) +..... +( f-1 of ) (100 )


Let A = {1, 2, 3, 4} and B = {ab} be two sets. Write the total number of onto functions from A to B.


If the mapping f : {1, 3, 4} → {1, 2, 5} and g : {1, 2, 5} → {1, 3}, given by f = {(1, 2), (3, 5), (4, 1)} and g = {(2, 3), (5, 1), (1, 3)}, then write fog. [NCERT EXEMPLAR]


Let\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\} = \text{B and C} = \left\{ x \in R : x \geq 0 \right\} and\]\[S = \left\{ \left( x, y \right) \in A \times B : x^2 + y^2 = 1 \right\} \text{and } S_0 = \left\{ \left( x, y \right) \in A \times C : x^2 + y^2 = 1 \right\}\]

Then,



If a function\[f : [2, \infty )\text{ to B defined by f}\left( x \right) = x^2 - 4x + 5\] is a bijection, then B =


Which of the following functions from

\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\}\]

 


If  \[F : [1, \infty ) \to [2, \infty )\] is given by

\[f\left( x \right) = x + \frac{1}{x}, then f^{- 1} \left( x \right)\]

 


A function f: R→ R defined by f(x) = `(3x) /5 + 2`, x ∈ R. Show that f is one-one and onto. Hence find f−1.


Set A has 3 elements and the set B has 4 elements. Then the number of injective mappings that can be defined from A to B is ______.


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

h = {(1,4), (2, 5), (3, 5)}


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

k = {(1,4), (2, 5)}


Let A = {0, 1} and N be the set of natural numbers. Then the mapping f: N → A defined by f(2n – 1) = 0, f(2n) = 1, ∀ n ∈ N, is onto.


The function f : R → R defined by f(x) = 3 – 4x is ____________.


Let X = {-1, 0, 1}, Y = {0, 2} and a function f : X → Y defiend by y = 2x4, is ____________.


The function f: R → R defined as f(x) = x3 is:


Let R be a relation on the set L of lines defined by l1 R l2 if l1 is perpendicular to l2, then relation R is ____________.


`x^(log_5x) > 5` implies ______.


Let A = R – {2} and B = R – {1}. If f: A `→` B is a function defined by f(x) = `(x - 1)/(x - 2)` then show that f is a one-one and an onto function.


The trigonometric equation tan–1x = 3tan–1 a has solution for ______.



The given function f : R → R is not ‘onto’ function. Give reason.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×