English

(A) F ( X ) = Sin 2 X , G ( X ) = √ X (B) F ( X ) = Sin X , G ( X ) = | X | (C) F ( X ) = X 2 , G ( X ) = Sin √ X F and G Cannot Be Determined. - Mathematics

Advertisements
Advertisements

Question

If \[g \left( f \left( x \right) \right) = \left| \sin x \right| \text{and} f \left( g \left( x \right) \right) = \left( \sin \sqrt{x} \right)^2 , \text{then}\]

 

Options

  •  \[f\left( x \right) = \sin^2 x, g\left( x \right) = \sqrt{x}\]

  • \[f\left( x \right) = \sin x, g\left( x \right) = |x|\]

  • \[f\left( x \right) = x^2 , g\left( x \right) = \sin \sqrt{x}\]

  •  f and g cannot be determied

MCQ

Solution

If we solve it  by the trial-and-error method, we can see that (a) satisfies the given condition.
From (a):

\[f\left( x \right) = \sin^2 x \text{ and } g\left( x \right) = \sqrt{x}\] 
\[ \Rightarrow f\left( g\left( x \right) \right) = f\left( \sqrt{x} \right) = \sin^2 \sqrt{x} = \left( \sin \sqrt{x} \right)^2\]

So, the answer is (a).

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.6 [Page 77]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 2 Functions
Exercise 2.6 | Q 32 | Page 77

RELATED QUESTIONS

Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Show that f is one-one.


Let A = R − {3} and B = R − {1}. Consider the function f: A → B defined by `f(x) = ((x- 2)/(x -3))`. Is f one-one and onto? Justify your answer.


If the function `f(x) = sqrt(2x - 3)` is invertible then find its inverse. Hence prove that `(fof^(-1))(x) = x`


Give an example of a function which is not one-one but onto ?


Classify the following function as injection, surjection or bijection : f : N → N given by f(x) = x2


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = |x|


Classify the following function as injection, surjection or bijection :

f : Q − {3} → Q, defined by `f (x) = (2x +3)/(x-3)`


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = 3 − 4x


Let A = {1, 2, 3}. Write all one-one from A to itself.


If f : R → R be the function defined by f(x) = 4x3 + 7, show that f is a bijection.


Show that if f1 and f2 are one-one maps from R to R, then the product f1 × f2 : R → R defined by (f1 × f2) (x) = f1 (x) f2 (x) need not be one - one.


Find gof and fog when f : R → R and g : R → R is defined by f(x) = 2x + 3 and  g(x) = x2 + 5 .


Verify associativity for the following three mappings : f : N → Z0 (the set of non-zero integers), g : Z0 → Q and h : Q → R given by f(x) = 2xg(x) = 1/x and h(x) = ex.


Find fog and gof  if : f(x) = sin−1 x, g(x) = x2


Let fgh be real functions given by f(x) = sin xg (x) = 2x and h (x) = cos x. Prove that fog = go (fh).


Let  f  be any real function and let g be a function given by g(x) = 2x. Prove that gof = f + f.


State with reason whether the following functions have inverse :
f : {1, 2, 3, 4} → {10} with f = {(1, 10), (2, 10), (3, 10), (4, 10)}


If f : R → R be defined by f(x) = x3 −3, then prove that f−1 exists and find a formula for f−1. Hence, find f−1(24) and f−1 (5).


If f : R → Rg : R → are given by f(x) = (x + 1)2 and g(x) = x2 + 1, then write the value of fog (−3).


Let \[f : \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \to\] A be defined by f(x) = sin x. If f is a bijection, write set A.


Let f : R → R be the function defined by f(x) = 4x − 3 for all x ∈ R Then write f .   [NCERT EXEMPLAR]


Which of the following functions from

\[A = \left\{ x : - 1 \leq x \leq 1 \right\}\]

to itself are bijections?

 

 

 


The function \[f : R \to R\] defined by

\[f\left( x \right) = 6^x + 6^{|x|}\] is 

 


If \[f : R \to R is given by f\left( x \right) = 3x - 5, then f^{- 1} \left( x \right)\] 

 


Let  \[f\left( x \right) = \frac{\alpha x}{x + 1}, x \neq - 1\] Then, for what value of α is \[f \left( f\left( x \right) \right) = x?\]

 


Write about strlen() function.


Let f: R → R be defined by f(x) = 3x – 4. Then f–1(x) is given by ______.


Let f: R → R be defined by f(x) = `1/x` ∀ x ∈ R. Then f is ______.


Let f: R → R be given by f(x) = tan x. Then f–1(1) is ______.


Which of the following functions from Z into Z is bijective?


Let R be a relation on the set L of lines defined by l1 R l2 if l1 is perpendicular to l2, then relation R is ____________.


A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever


Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:

R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}

  • Mr. ’X’ and his wife ‘W’ both exercised their voting right in the general election-2019, Which of the following is true?

If log102 = 0.3010.log103 = 0.4771 then the number of ciphers after decimal before a significant figure comes in `(5/3)^-100` is ______.


Let a and b are two positive integers such that b ≠ 1. Let g(a, b) = Number of lattice points inside the quadrilateral formed by lines x = 0, y = 0, x = b and y = a. f(a, b) = `[a/b] + [(2a)/b] + ... + [((b - 1)a)/b]`, then the value of `[(g(101, 37))/(f(101, 37))]` is ______.

(Note P(x, y) is lattice point if x, y ∈ I)

(where [.] denotes greatest integer function)


Let f(x) = ax (a > 0) be written as f(x) = f1(x) + f2(x), where f1(x) is an even function and f2(x) is an odd function. Then f1(x + y) + f1(x – y) equals ______.


If A = {x ∈ R: |x – 2| > 1}, B = `{x ∈ R : sqrt(x^2 - 3) > 1}`, C = {x ∈ R : |x – 4| ≥ 2} and Z is the set of all integers, then the number of subsets of the set (A ∩ B ∩ C) C ∩ Z is ______.


Let a function `f: N rightarrow N` be defined by

f(n) = `{:[(2n",", n = 2","  4","  6","  8","......),(n - 1",", n = 3","  7","  11","  15","......),((n + 1)/2",", n = 1","  5","  9","  13","......):}`

then f is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×