हिंदी

If G ( X ) = X 2 + X − 2 a N D 1 2 G O F ( X ) = 2 X 2 − 5 X + 2 is Equal to (A) 2 X − 3 (B) 2 X + 3 (C) 2 X 2 + 3 X + 1 (D) 2 X 2 − 3 X − 1 - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[g\left( x \right) = x^2 + x - 2\text{ and} \frac{1}{2} gof\left( x \right) = 2 x^2 - 5x + 2\] is equal to

विकल्प

  • \[2 x - 3\]

  • \[2 x + 3\]

  • \[2 x^2 + 3x + 1\]

  • 2   \[x^2 - 3x - 1\]

MCQ

उत्तर

We will solve this problem by the trial-and-error method.
Let us check option (a) first. \[\text{If f}\left( x \right) = 2x - 3\] 
\[\frac{1}{2}\left( gof \right)\left( x \right) = g\left( f\left( x \right) \right)\] 
\[ = \frac{1}{2}g\left( 2x - 3 \right)\] 
\[ = \frac{1}{2}\left[ \left( 2x - 3 \right)^2 + \left( 2x - 3 \right) - 2 \right]\] 
\[ = \frac{1}{2}\left[ 4 x^2 + 9 - 12x + 2x - 3 - 2 \right]\] 
\[ = \frac{1}{2}\left[ 4 x^2 - 10x + 4 \right]\] 
\[ = 2 x^2 - 5x + 2\]

The given condition is satisfied by (a).
So, the answer is (a).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.6 [पृष्ठ ७९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.6 | Q 45 | पृष्ठ ७९

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Show that the modulus function f: → R given by f(x) = |x| is neither one-one nor onto, where |x| is x, if x is positive or 0 and |x|  is − x if x is negative.


Give an example of a function which is one-one but not onto ?


 Which of the following functions from A to B are one-one and onto ?  

f3 = {(ax), (bx), (cz), (dz)} ; A = {abcd,}, B = {xyz}. 


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = |x|


Classify the following function as injection, surjection or bijection :

 f : R → R, defined by f(x) = sinx


If f : A → B is an injection, such that range of f = {a}, determine the number of elements in A.


Show that the function f : R − {3} → R − {2} given by f(x) = `(x-2)/(x-3)` is a bijection.


Set of ordered pair of  a function? If so, examine whether the mapping is injective or surjective :{(xy) : x is a person, y is the mother of x}


Find gof and fog when f : R → R and g : R → R is  defined by  f(x) = 8x3 and  g(x) = x1/3.


Give examples of two functions f : N → N and g : N → N, such that gof is onto but f is not onto.


Find fog and gof  if : f (x) = x+1, g(x) = `e^x`

.


Find fog and gof  if : f(x)= x + 1, g (x) = 2x + 3 .


A function f : R → R is defined as f(x) = x3 + 4. Is it a bijection or not? In case it is a bijection, find f−1 (3).


If f : R → (0, 2) defined by `f (x) =(e^x - e^(x))/(e^x +e^(-x))+1`is invertible , find f-1.


If A = {abc} and B = {−2, −1, 0, 1, 2}, write the total number of one-one functions from A to B.


If f : R → R is defined by f(x) = x2, write f−1 (25)


Let \[f : \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \to\] A be defined by f(x) = sin x. If f is a bijection, write set A.


Let `f : R - {- 3/5}` → R be a function defined as `f  (x) = (2x)/(5x +3).` 

f-1 : Range of f → `R -{-3/5}`.


Let f : R → Rg : R → R be two functions defined by f(x) = x2 + x + 1 and g(x) = 1 − x2. Write fog (−2).


Write the domain of the real function

`f (x) = sqrtx - [x] .`


The function \[f : [0, \infty ) \to \text {R given by } f\left( x \right) = \frac{x}{x + 1} is\]

 

 


\[f : R \to R\] is defined by

\[f\left( x \right) = \frac{e^{x^2} - e^{- x^2}}{e^{x^2 + e^{- x^2}}} is\]

 


Which of the following functions from

\[A = \left\{ x \in R : - 1 \leq x \leq 1 \right\}\]

 


The distinct linear functions that map [−1, 1] onto [0, 2] are


A function f: R→ R defined by f(x) = `(3x) /5 + 2`, x ∈ R. Show that f is one-one and onto. Hence find f−1.


If f(x) = `(x+3)/(4x−5) , "g"(x) = (3+5x)/(4x−1)` then verify that `("fog") (x)` = x.


Let N be the set of natural numbers and the function f: N → N be defined by f(n) = 2n + 3 ∀ n ∈ N. Then f is ______.


Set A has 3 elements and the set B has 4 elements. Then the number of injective mappings that can be defined from A to B is ______.


If f: R → R is defined by f(x) = x2 – 3x + 2, write f(f (x))


Let the function f: R → R be defined by f(x) = cosx, ∀ x ∈ R. Show that f is neither one-one nor onto


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

h(x) = x|x|


Using the definition, prove that the function f: A→ B is invertible if and only if f is both one-one and onto


The function f: R → R defined as f(x) = x3 is:


Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let f: {1,2,3,....} → {1,4,9,....} be defined by f(x) = x2 is ____________.

If f; R → R f(x) = 10x + 3 then f–1(x) is:


Consider a function f: `[0, pi/2] ->` R, given by f(x) = sinx and `g[0, pi/2] ->` R given by g(x) = cosx then f and g are


If f: R→R is a function defined by f(x) = `[x - 1]cos((2x - 1)/2)π`, where [ ] denotes the greatest integer function, then f is ______.


Let [x] denote the greatest integer ≤ x, where x ∈ R. If the domain of the real valued function f(x) = `sqrt((|[x]| - 2)/(|[x]| - 3)` is (–∞, a) ∪ [b, c) ∪ [4, ∞), a < b < c, then the value of a + b + c is ______.


The solution set of the inequation log1/3(x2 + x + 1) + 1 > 0 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×