English

If G ( X ) = X 2 + X − 2 a N D 1 2 G O F ( X ) = 2 X 2 − 5 X + 2 is Equal to (A) 2 X − 3 (B) 2 X + 3 (C) 2 X 2 + 3 X + 1 (D) 2 X 2 − 3 X − 1 - Mathematics

Advertisements
Advertisements

Question

If  \[g\left( x \right) = x^2 + x - 2\text{ and} \frac{1}{2} gof\left( x \right) = 2 x^2 - 5x + 2\] is equal to

Options

  • \[2 x - 3\]

  • \[2 x + 3\]

  • \[2 x^2 + 3x + 1\]

  • 2   \[x^2 - 3x - 1\]

MCQ

Solution

We will solve this problem by the trial-and-error method.
Let us check option (a) first. \[\text{If f}\left( x \right) = 2x - 3\] 
\[\frac{1}{2}\left( gof \right)\left( x \right) = g\left( f\left( x \right) \right)\] 
\[ = \frac{1}{2}g\left( 2x - 3 \right)\] 
\[ = \frac{1}{2}\left[ \left( 2x - 3 \right)^2 + \left( 2x - 3 \right) - 2 \right]\] 
\[ = \frac{1}{2}\left[ 4 x^2 + 9 - 12x + 2x - 3 - 2 \right]\] 
\[ = \frac{1}{2}\left[ 4 x^2 - 10x + 4 \right]\] 
\[ = 2 x^2 - 5x + 2\]

The given condition is satisfied by (a).
So, the answer is (a).

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Functions - Exercise 2.6 [Page 79]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 2 Functions
Exercise 2.6 | Q 45 | Page 79

RELATED QUESTIONS

Show that the function f: R* → R* defined by `f(x) = 1/x` is one-one and onto, where R* is the set of all non-zero real numbers. Is the result true if the domain R* is replaced by N, with co-domain being same as R?


Let A and B be sets. Show that f: A × B → B × A such that (a, b) = (b, a) is bijective function.


Let f: R → R be defined as f(x) = x4. Choose the correct answer.


Let S = {abc} and T = {1, 2, 3}. Find F−1 of the following functions F from S to T, if it exists.

F = {(a, 3), (b, 2), (c, 1)} 


Let S = {abc} and T = {1, 2, 3}. Find F−1 of the following functions F from S to T, if it exists.

F = {(a, 2), (b, 1), (c, 1)}


Classify the following function as injection, surjection or bijection :

 f : R → R, defined by f(x) = sinx


If f : A → B is an injection, such that range of f = {a}, determine the number of elements in A.


Let A = [-1, 1]. Then, discuss whether the following functions from A to itself is one-one, onto or bijective : h(x) = x2 


Show that the logarithmic function  f : R0+ → R   given  by f (x)  loga x ,a> 0   is   a  bijection.


Let f : R → R and g : R → R be defined by f(x) = x2 and g(x) = x + 1. Show that fog ≠ gof.


if f (x) = `sqrt (x +3) and  g (x) = x ^2 + 1` be two real functions, then find fog and gof.


Let f : [−1, ∞) → [−1, ∞) be given by f(x) = (x + 1)2 − 1, x ≥ −1. Show that f is invertible. Also, find the set S = {x : f(x) = f−1 (x)}.


If A = {1, 2, 3} and B = {ab}, write the total number of functions from A to B.


Write the domain of the real function

`f (x) = 1/(sqrt([x] - x)`.


The function \[f : [0, \infty ) \to \text {R given by } f\left( x \right) = \frac{x}{x + 1} is\]

 

 


A function f from the set of natural numbers to the set of integers defined by

\[f\left( n \right)\begin{cases}\frac{n - 1}{2}, & \text{when n is odd} \\ - \frac{n}{2}, & \text{when n is even}\end{cases}\]

 


Mark the correct alternative in the following question:

If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is


For sets A, B and C, let f: A → B, g: B → C be functions such that g o f is surjective. Then g is surjective.


Let the function f: R → R be defined by f(x) = cosx, ∀ x ∈ R. Show that f is neither one-one nor onto


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

k = {(1,4), (2, 5)}


If f(x) = (4 – (x – 7)3}, then f–1(x) = ______.


The function f : A → B defined by f(x) = 4x + 7, x ∈ R is ____________.


An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Ravi wants to know among those relations, how many functions can be formed from B to G?

Students of Grade 9, planned to plant saplings along straight lines, parallel to each other to one side of the playground ensuring that they had enough play area. Let us assume that they planted one of the rows of the saplings along the line y = x − 4. Let L be the set of all lines which are parallel on the ground and R be a relation on L.

Answer the following using the above information.

  • Let f: R → R be defined by f(x) = x − 4. Then the range of f(x) is ____________.

Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let f: R → R be defined by f(x) = x2 is:

Let f: R → R defined by f(x) = x4. Choose the correct answer


Consider a function f: `[0, pi/2] ->` R, given by f(x) = sinx and `g[0, pi/2] ->` R given by g(x) = cosx then f and g are


The domain of the function `cos^-1((2sin^-1(1/(4x^2-1)))/π)` is ______.


Let f: R→R be defined as f(x) = 2x – 1 and g: R – {1}→R be defined as g(x) = `(x - 1/2)/(x - 1)`. Then the composition function f (g(x)) is ______.


The solution set of the inequation log1/3(x2 + x + 1) + 1 > 0 is ______.


Consider a set containing function A= {cos–1cosx, sin(sin–1x), sinx((sinx)2 – 1), etan{x}, `e^(|cosx| + |sinx|)`, sin(tan(cosx)), sin(tanx)}. B, C, D, are subsets of A, such that B contains periodic functions, C contains even functions, D contains odd functions then the value of n(B ∩ C) + n(B ∩ D) is ______ where {.} denotes the fractional part of functions)


Difference between the greatest and least value of f(x) = `(1 + (cos^-1x)/π)^2 - (1 + (sin^-1x)/π)^2` is ______.


The graph of the function y = f(x) is symmetrical about the line x = 2, then ______.


If A = {x ∈ R: |x – 2| > 1}, B = `{x ∈ R : sqrt(x^2 - 3) > 1}`, C = {x ∈ R : |x – 4| ≥ 2} and Z is the set of all integers, then the number of subsets of the set (A ∩ B ∩ C) C ∩ Z is ______.


Let f(x) be a polynomial of degree 3 such that f(k) = `-2/k` for k = 2, 3, 4, 5. Then the value of 52 – 10f(10) is equal to ______.


Let A = {1, 2, 3, ..., 10} and f : A `rightarrow` A be defined as

f(k) = `{{:(k + 1, if k  "is odd"),(     k, if k  "is even"):}`.

Then the number of possible functions g : A `rightarrow` A such that gof = f is ______.


A function f : [– 4, 4] `rightarrow` [0, 4] is given by f(x) = `sqrt(16 - x^2)`. Show that f is an onto function but not a one-one function. Further, find all possible values of 'a' for which f(a) = `sqrt(7)`.


Let A = R – {2} and B = R – {1}. If f: A `→` B is a function defined by f(x) = `(x - 1)/(x - 2)` then show that f is a one-one and an onto function.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×