हिंदी

F : a → B Given by 3 F ( X ) + 2 − X = 4 is a Bijection, Then - Mathematics

Advertisements
Advertisements

प्रश्न

 \[f : A \to \text{B given by } 3^{ f\left( x \right)} + 2^{- x} = 4\] is a bijection, then

 

 

 

 

विकल्प

  • \[A = \left\{ x \in R : - 1 < x < \infty \right\}, B = \left\{ x \in R : 2 < x < 4 \right\}\]

  • \[A = \left\{ x \in R : - 3 < x < \infty \right\}, B = \left\{ x \in R : 2 < x < 4 \right\}\]

  • \[A = \left\{ x \in R : - 3 < x < \infty \right\}, B = \left\{ x \in R : 2 < x < 4 \right\}\]

  • None of these

MCQ

उत्तर

(d) None of these

\[f: A \to B\]
\[ 3^{f(x)} + 2^{- x} = 4 \]
\[ \Rightarrow 3^{f(x)} = 4 - 2^{- x} \]
\[\text{Taking log on both the sides} , \]
\[f(x) \log 3 = \log \left( 4 - 2^{- x} \right)\]
\[ \Rightarrow f(x) = \frac{\log \left( 4 - 2^{- x} \right)}{\log 3}\]
\[\text{Logaritmic function will only be defined if} 4 - 2^{- x} > 0\]
\[ \Rightarrow 4 > 2^{- x} \]
\[ \Rightarrow 2^2 > 2^{- x} \]
\[ \Rightarrow 2 > - x\]
\[ \Rightarrow - 2 < x\]
\[ \Rightarrow x \in \left( - 2, \infty \right)\]
\[\text{That means A} = \left\{ x \in R: - 2 < x < \infty \right\}\]
\[\text{As we know that}, f(x) = \frac{\log \left( 4 - 2^{- x} \right)}{\log 3}\]
\[\text{ We take } x = 0 \in \left( - 2, \infty \right)\]
\[ \Rightarrow f(x) = 1 \text{which does not belong to any of the options} . \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.6 [पृष्ठ ७५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.6 | Q 3 | पृष्ठ ७५

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Show that the function f in `A=R-{2/3} ` defined as `f(x)=(4x+3)/(6x-4)` is one-one and onto hence find f-1


Check the injectivity and surjectivity of the following function:

f: Z → Z given by f(x) = x3


Show that the modulus function f: → R given by f(x) = |x| is neither one-one nor onto, where |x| is x, if x is positive or 0 and |x|  is − x if x is negative.


Let fR → be defined as f(x) = 10x + 7. Find the function gR → R such that g o f = f o = 1R.


Give examples of two functions fN → Z and gZ → Z such that g o f is injective but gis not injective.

(Hint: Consider f(x) = x and g(x) =|x|)


Set of ordered pair of  a function? If so, examine whether the mapping is injective or surjective :{(xy) : x is a person, y is the mother of x}


Let A = {1, 2, 3}. Write all one-one from A to itself.


If A = {1, 2, 3}, show that a one-one function f : A → A must be onto.


Let f : N → N be defined by

`f(n) = { (n+ 1, if n  is  odd),( n-1 , if n  is  even):}`

Show that f is a bijection. 

                      [CBSE 2012, NCERT]


Find gof and fog when f : R → R and g : R → R is defined by f(x) = 2x + 3 and  g(x) = x2 + 5 .


Give examples of two functions f : N → N and g : N → N, such that gof is onto but f is not onto.


Consider the function f : R→  [-9 , ∞ ]given by f(x) = 5x2 + 6x - 9. Prove that f is invertible with -1 (y) = `(sqrt(54 + 5y) -3)/5`             [CBSE 2015]


Let A = {x &epsis; R | −1 ≤ x ≤ 1} and let f : A → Ag : A → A be two functions defined by f(x) = x2 and g(x) = sin (π x/2). Show that g−1 exists but f−1 does not exist. Also, find g−1.


If A = {1, 2, 3} and B = {ab}, write the total number of functions from A to B.


If f : R → R defined by f(x) = 3x − 4 is invertible, then write f−1 (x).


Which one the following relations on A = {1, 2, 3} is a function?
f = {(1, 3), (2, 3), (3, 2)}, g = {(1, 2), (1, 3), (3, 1)}                                                                                                        [NCERT EXEMPLAR]


If f(x) = 4 −( x - 7)3 then write f-1 (x).


Let

\[A = \left\{ x : - 1 \leq x \leq 1 \right\} \text{and} f : A \to \text{A such that f}\left( x \right) = x|x|\]

 


If a function\[f : [2, \infty )\text{ to B defined by f}\left( x \right) = x^2 - 4x + 5\] is a bijection, then B =


If  \[f : R \to \left( - 1, 1 \right)\] is defined by

\[f\left( x \right) = \frac{- x|x|}{1 + x^2}, \text{ then } f^{- 1} \left( x \right)\] equals

 


Let \[f\left(x\right) = x^3\] be a function with domain {0, 1, 2, 3}. Then domain of \[f^{-1}\] is ______.


Mark the correct alternative in the following question:

If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is


Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
{(x, y): x is a person, y is the mother of x}


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

h = {(1,4), (2, 5), (3, 5)}


Let g(x) = x2 – 4x – 5, then ____________.


Let f : R `->` R be a function defined by f(x) = x3 + 4, then f is ______.


A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever


Let I be the set of all citizens of India who were eligible to exercise their voting right in the general election held in 2019. A relation ‘R’ is defined on I as follows:

R = {(V1, V2) ∶ V1, V2 ∈ I and both use their voting right in the general election - 2019}

  • Three friends F1, F2, and F3 exercised their voting right in general election-2019, then which of the following is true?

Raji visited the Exhibition along with her family. The Exhibition had a huge swing, which attracted many children. Raji found that the swing traced the path of a Parabola as given by y = x2.

Answer the following questions using the above information.

  • Let : N → R be defined by f(x) = x2. Range of the function among the following is ____________.

Let f: R → R defined by f(x) = x4. Choose the correct answer


Let f: R → R defined by f(x) = 3x. Choose the correct answer


If `f : R -> R^+  U {0}` be defined by `f(x) = x^2, x ∈ R`. The mapping is


A function f: x → y is said to be one – one (or injective) if:


Let the function f: R → R be defined by f(x) = 4x – 1, ∀ x ∈ R then 'f' is


Let x is a real number such that are functions involved are well defined then the value of `lim_(t→0)[max{(sin^-1  x/3 + cos^-1  x/3)^2, min(x^2 + 4x + 7)}]((sin^-1t)/t)` where [.] is greatest integer function and all other brackets are usual brackets.


If A = {x ∈ R: |x – 2| > 1}, B = `{x ∈ R : sqrt(x^2 - 3) > 1}`, C = {x ∈ R : |x – 4| ≥ 2} and Z is the set of all integers, then the number of subsets of the set (A ∩ B ∩ C) C ∩ Z is ______.


Let a function `f: N rightarrow N` be defined by

f(n) = `{:[(2n",", n = 2","  4","  6","  8","......),(n - 1",", n = 3","  7","  11","  15","......),((n + 1)/2",", n = 1","  5","  9","  13","......):}`

then f is ______.


A function f : [– 4, 4] `rightarrow` [0, 4] is given by f(x) = `sqrt(16 - x^2)`. Show that f is an onto function but not a one-one function. Further, find all possible values of 'a' for which f(a) = `sqrt(7)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×