हिंदी

(A) Injective (B) Surjective (C) Bijective (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

\[f : R \to R \text{given by} f\left( x \right) = x + \sqrt{x^2} \text{ is }\]

 

 

विकल्प

  • injective

  • surjective

  • bijective

  • None of these

MCQ

उत्तर

\[f\left( x \right) = x + \sqrt{x^2} = x \pm x = 0\text{ or 2x}\]
\[\Rightarrow \text{Each element of the domain has 2 images}.\] ⇒ f is not a function.
So, the answer is (d).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.6 [पृष्ठ ७५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.6 | Q 2 | पृष्ठ ७५

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Check the injectivity and surjectivity of the following function:

f: Z → Z given by f(x) = x2


Check the injectivity and surjectivity of the following function:

f: R → R given by f(x) = x2


Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. Show that f is one-one.


Classify the following function as injection, surjection or bijection :

f : Q − {3} → Q, defined by `f (x) = (2x +3)/(x-3)`


Classify the following function as injection, surjection or bijection :

f : Q → Q, defined by f(x) = x3 + 1


Classify the following function as injection, surjection or bijection :

f : R → R, defined by f(x) = 3 − 4x


Let A = {1, 2, 3}. Write all one-one from A to itself.


Find gof and fog when f : R → R and g : R → R is defined by  f(x) = x2 + 2x − 3 and  g(x) = 3x − 4 .


Let f = {(3, 1), (9, 3), (12, 4)} and g = {(1, 3), (3, 3) (4, 9) (5, 9)}. Show that gof and fog are both defined. Also, find fog and gof.


Find  fog (2) and gof (1) when : f : R → R ; f(x) = x2 + 8 and g : R → Rg(x) = 3x3 + 1.


Verify associativity for the following three mappings : f : N → Z0 (the set of non-zero integers), g : Z0 → Q and h : Q → R given by f(x) = 2xg(x) = 1/x and h(x) = ex.


Find fog and gof  if : f (x) = x2 g(x) = cos x .


Consider f : {1, 2, 3} → {abc} and g : {abc} → {apple, ball, cat} defined as f (1) = af (2) = bf (3) = cg (a) = apple, g (b) = ball and g (c) =  cat. Show that fg and gof are invertible. Find f−1g−1 and gof−1and show that (gof)−1 = f 1o g−1


Consider f : R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.


If A = {1, 2, 3} and B = {ab}, write the total number of functions from A to B.


If f : R → R is defined by f(x) = x2, write f−1 (25)


If f : C → C is defined by f(x) = x4, write f−1 (1).


If f : R → R defined by f(x) = 3x − 4 is invertible, then write f−1 (x).


If f(x) = x + 7 and g(x) = x − 7, x ∈ R, write fog (7).


Write the domain of the real function f defined by f(x) = `sqrt (25 -x^2)`   [NCERT EXEMPLAR]


Which of the following functions form Z to itself are bijections?

 

 

 
 

Let

\[f : R - \left\{ n \right\} \to R\]

\[f\left( x \right) = \frac{x - m}{x - n}, \text{where} \ m \neq n .\] Then,
 

Let

 \[A = \left\{ x \in R : x \geq 1 \right\}\] The inverse of the function, 

\[f : A \to A\] given by

\[f\left( x \right) = 2^{x \left( x - 1 \right)} , is\]

 


Let [x] denote the greatest integer less than or equal to x. If \[f\left( x \right) = \sin^{- 1} x, g\left( x \right) = \left[ x^2 \right]\text{  and } h\left( x \right) = 2x, \frac{1}{2} \leq x \leq \frac{1}{\sqrt{2}}\]

 


If  \[f\left( x \right) = \sin^2 x\] and the composite function   \[g\left( f\left( x \right) \right) = \left| \sin x \right|\] then g(x) is equal to


Let \[f\left(x\right) = x^3\] be a function with domain {0, 1, 2, 3}. Then domain of \[f^{-1}\] is ______.


Let X = {1, 2, 3}and Y = {4, 5}. Find whether the following subset of X ×Y are function from X to Y or not

f = {(1, 4), (1, 5), (2, 4), (3, 5)}


Let A = R – {3}, B = R – {1}. Let f: A → B be defined by f(x) = `(x - 2)/(x - 3)` ∀ x ∈ A . Then show that f is bijective


Let A = [–1, 1]. Then, discuss whether the following functions defined on A are one-one, onto or bijective:

f(x) = `x/2`


Let A = {1, 2, 3, ...n} and B = {a, b}. Then the number of surjections from A into B is ______.


The function f : A → B defined by f(x) = 4x + 7, x ∈ R is ____________.


If `f : R -> R^+  U {0}` be defined by `f(x) = x^2, x ∈ R`. The mapping is


If f; R → R f(x) = 10x + 3 then f–1(x) is:


Let f(1, 3) `rightarrow` R be a function defined by f(x) = `(x[x])/(1 + x^2)`, where [x] denotes the greatest integer ≤ x, Then the range of f is ______.


Let f(x) = ax (a > 0) be written as f(x) = f1(x) + f2(x), where f1(x) is an even function and f2(x) is an odd function. Then f1(x + y) + f1(x – y) equals ______.


Let A = {1, 2, 3, ..., 10} and f : A `rightarrow` A be defined as

f(k) = `{{:(k + 1, if k  "is odd"),(     k, if k  "is even"):}`.

Then the number of possible functions g : A `rightarrow` A such that gof = f is ______.


Let f(x) be a polynomial function of degree 6 such that `d/dx (f(x))` = (x – 1)3 (x – 3)2, then

Assertion (A): f(x) has a minimum at x = 1.

Reason (R): When `d/dx (f(x)) < 0, ∀  x ∈ (a - h, a)` and `d/dx (f(x)) > 0, ∀  x ∈ (a, a + h)`; where 'h' is an infinitesimally small positive quantity, then f(x) has a minimum at x = a, provided f(x) is continuous at x = a.


ASSERTION (A): The relation f : {1, 2, 3, 4} `rightarrow` {x, y, z, p} defined by f = {(1, x), (2, y), (3, z)} is a bijective function.

REASON (R): The function f : {1, 2, 3} `rightarrow` {x, y, z, p} such that f = {(1, x), (2, y), (3, z)} is one-one.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×