हिंदी

Let F (X) =`{ (1 + X, 0≤ X ≤ 2) , (3 -x , 2 < X ≤ 3):}` Find Fof. - Mathematics

Advertisements
Advertisements

प्रश्न

Let

f (x) =`{ (1 + x, 0≤ x ≤ 2) , (3 -x , 2 < x ≤ 3):}`

Find fof.

उत्तर

f (x) =`{ (1 + x, 0≤ x ≤ 2) , (3 -x , 2 < x ≤ 3):}`

It can be written as,

f (x) = `{ (1 +x , 0 ≤ x ≤ 1) , (1 +x, 1< x ≤ 2) ,( 3 - x, 2 < x ≤ 3):}`

When, 0 ≤ x ≤ 1

Then , `f (x) = 1 +x `

Now when , 0 ≤ x ≤ 1 then ,1 ≤ x + 1 ≤ 2

Then , `f (f(x))` = 1 + (1 + x ) = 2 + x   [ ∵ 1 ≤ f (x) < 2]

When ,1 < x ≤ 2

Then , f (x) = 1 + x

Now when , 1 < x ≤ 2 then,2 < x +1 ≤ 3

Then , f (f(x)) = 3 − ( 1+ x ) = 2 − x  [ ∵ 2 ≤ f(x) <3 ]

When , 2 < x ≤ 3

Then , f (x) = 3 - x

Now when ,2< x ≤ 3 then ,0 ≤ 3 − x < 1

Then , f (f(x)) = 1 + ( 3 − x ) = 4 − x     [ ∵ 0 ≤ f (x) < 1 ]

f(f(x)) = ` {(2 + x , 0 ≤ x ≤ 1) , (2 -x, 1 < x ≤ 2),( 4- x , 2 < x ≤ 3):}`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Functions - Exercise 2.3 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 2 Functions
Exercise 2.3 | Q 12 | पृष्ठ ५५

वीडियो ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्न

Show that the function f in `A=R-{2/3} ` defined as `f(x)=(4x+3)/(6x-4)` is one-one and onto hence find f-1


Following the case, state whether the function is one-one, onto, or bijective. Justify your answer.

f: → R defined by f(x) = 1 + x2


Show that the function f: R → R given by f(x) = x3 is injective.


Give an example of a function which is not one-one but onto ?


Classify the following function as injection, surjection or bijection :

 f : R → R, defined by f(x) = x3 − x


Set of ordered pair of  a function? If so, examine whether the mapping is injective or surjective :{(xy) : x is a person, y is the mother of x}


Give examples of two surjective functions f1 and f2 from Z to Z such that f1 + f2 is not surjective.


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of each of the following:
(i) an injective map from A to B
(ii) a mapping from A to B which is not injective
(iii) a mapping from A to B.


Show that f : R→ R, given by f(x) = x — [x], is neither one-one nor onto.


Let f : R → R and g : R → R be defined by f(x) = + 1 and (x) = x − 1. Show that fog = gof = IR.


If f : A → B and g : B → C are onto functions, show that gof is a onto function.


Let f : [−1, ∞) → [−1, ∞) be given by f(x) = (x + 1)2 − 1, x ≥ −1. Show that f is invertible. Also, find the set S = {x : f(x) = f−1 (x)}.


Which one of the following graphs represents a function?


If A = {abc} and B = {−2, −1, 0, 1, 2}, write the total number of one-one functions from A to B.


If f : R → R is defined by f(x) = x2, find f−1 (−25).


Let \[f : \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \to R\]  be a function defined by f(x) = cos [x]. Write range (f).


If f : R → R defined by f(x) = 3x − 4 is invertible, then write f−1 (x).


If f : R → Rg : R → are given by f(x) = (x + 1)2 and g(x) = x2 + 1, then write the value of fog (−3).


Let f : R → R+ be defined by f(x) = axa > 0 and a ≠ 1. Write f−1 (x).


Let f be an invertible real function. Write ( f-1  of ) (1) + ( f-1  of ) (2) +..... +( f-1 of ) (100 )


Write the domain of the real function

`f (x) = 1/(sqrt([x] - x)`.


Write whether f : R → R, given by `f(x) = x + sqrtx^2` is one-one, many-one, onto or into.


Let f : R → R be the function defined by f(x) = 4x − 3 for all x ∈ R Then write f .   [NCERT EXEMPLAR]


If the mapping f : {1, 3, 4} → {1, 2, 5} and g : {1, 2, 5} → {1, 3}, given by f = {(1, 2), (3, 5), (4, 1)} and g = {(2, 3), (5, 1), (1, 3)}, then write fog. [NCERT EXEMPLAR]


If a function g = {(1, 1), (2, 3), (3, 5), (4, 7)} is described by g(x) = \[\alpha x + \beta\]  then find the values of \[\alpha\] and \[ \beta\] . [NCERT EXEMPLAR]


The function 

f : A → B defined by 

f (x) = - x2 + 6x - 8 is a bijection if 

 

 

 

 


The range of the function

\[f\left( x \right) =^{7 - x} P_{x - 3}\]

 


The function \[f : R \to R\] defined by

\[f\left( x \right) = 6^x + 6^{|x|}\] is 

 


The inverse of the function

\[f : R \to \left\{ x \in R : x < 1 \right\}\] given by

\[f\left( x \right) = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] is 

 


Let f: R → R be defined by f(x) = x2 + 1. Then, pre-images of 17 and – 3, respectively, are ______.


Let f: R → R be defined by f(x) = `1/x` ∀ x ∈ R. Then f is ______.


Let f: `[2, oo)` → R be the function defined by f(x) = x2 – 4x + 5, then the range of f is ______.


The domain of the function `"f"("x") = 1/(sqrt ({"sin x"} + {"sin" ( pi + "x")}))` where {.} denotes fractional part, is


Let R be a relation on the set L of lines defined by l1 R l2 if l1 is perpendicular to l2, then relation R is ____________.


Given a function If as f(x) = 5x + 4, x ∈ R. If g : R → R is inverse of function ‘f then


An organization conducted a bike race under 2 different categories-boys and girls. Totally there were 250 participants. Among all of them finally, three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets B and G with these participants for his college project. Let B = {b1,b2,b3} G={g1,g2} where B represents the set of boys selected and G the set of girls who were selected for the final race.

Ravi decides to explore these sets for various types of relations and functions.

  • Ravi wants to find the number of injective functions from B to G. How many numbers of injective functions are possible?

Function f: R → R, defined by f(x) = `x/(x^2 + 1)` ∀ x ∈ R is not


If A = {x ∈ R: |x – 2| > 1}, B = `{x ∈ R : sqrt(x^2 - 3) > 1}`, C = {x ∈ R : |x – 4| ≥ 2} and Z is the set of all integers, then the number of subsets of the set (A ∩ B ∩ C) C ∩ Z is ______.


Let A = R – {2} and B = R – {1}. If f: A `→` B is a function defined by f(x) = `(x - 1)/(x - 2)` then show that f is a one-one and an onto function.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×