हिंदी

The value of ∫ax.exdx equals - Mathematics

Advertisements
Advertisements

प्रश्न

The value of `inta^x.e^x dx` equals

विकल्प

  • `(a^x.log_ea)e^x + c`

  • `(a^x.e^x)/(log_e(ae)) + c`

  • `(a^x.e^x)/(log_(ae)e) + c`

  • `log_e(ae)(ae)^x + c`

MCQ

उत्तर

`bb((a^x.e^x)/(log_e(ae)) + c)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2024-2025 (April) Specimen Paper

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`


Integrate the function in x sin-1 x.


Integrate the function in `((x- 3)e^x)/(x - 1)^3`.


Find : 

`∫(log x)^2 dx`


Evaluate the following: `int x.sin^-1 x.dx`


Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`


Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`


Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

`int (log "x")/(1 + log "x")^2` dx


Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 


Evaluate: `int "dx"/("9x"^2 - 25)`


Choose the correct alternative:

`int ("d"x)/((x - 8)(x + 7))` =


`int"e"^(4x - 3) "d"x` = ______ + c


`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?


`int log x * [log ("e"x)]^-2` dx = ?


`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.


Find `int_0^1 x(tan^-1x)  "d"x`


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


`int tan^-1 sqrt(x)  "d"x` is equal to ______.


Find `int e^x ((1 - sinx)/(1 - cosx))dx`.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`


Evaluate:

`int((1 + sinx)/(1 + cosx))e^x dx`


Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`


Evaluate the following.

`intx^3/sqrt(1+x^4)  dx`


Evaluate the following.

`intx^3e^(x^2) dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)`dx


Evaluate `int(1 + x + x^2/(2!))dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×