Advertisements
Advertisements
प्रश्न
The value of `inta^x.e^x dx` equals
विकल्प
`(a^x.log_ea)e^x + c`
`(a^x.e^x)/(log_e(ae)) + c`
`(a^x.e^x)/(log_(ae)e) + c`
`log_e(ae)(ae)^x + c`
उत्तर
`bb((a^x.e^x)/(log_e(ae)) + c)`
APPEARS IN
संबंधित प्रश्न
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in x sin-1 x.
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
Find :
`∫(log x)^2 dx`
Evaluate the following: `int x.sin^-1 x.dx`
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
Evaluate: `int "dx"/("9x"^2 - 25)`
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
`int"e"^(4x - 3) "d"x` = ______ + c
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
`int log x * [log ("e"x)]^-2` dx = ?
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
Find `int_0^1 x(tan^-1x) "d"x`
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
`int tan^-1 sqrt(x) "d"x` is equal to ______.
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
Evaluate the following.
`intx^3e^(x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx
Evaluate `int(1 + x + x^2/(2!))dx`.