Advertisements
Advertisements
प्रश्न
A matrix which is both symmetric and skew symmetric matrix is a ______.
विकल्प
triangular matrix
identity matrix
diagonal matrix
null matrix
उत्तर
A matrix which is both symmetric and skew symmetric matrix is a null matrix.
Explanation:
A matrix that is both symmetric and skew-symmetric must satisfy the properties of both types:
- Symmetric Matrix: A matrix A is symmetric if A = AT, meaning it is equal to its transpose.
- Skew-Symmetric Matrix: A matrix A is skew-symmetric if A = – AT, meaning it is equal to the negative of its transpose.
For a matrix to be both symmetric and skew-symmetric, we have:
A = AT and A = – AT
Combining these, we get:
A = – A
This implies that each element of the matrix must be zero:
Aij = – Aij
2Aij = 0
Aij = 0
Therefore, the only matrix that satisfies both conditions is the null matrix (a matrix where all elements are zero).
APPEARS IN
संबंधित प्रश्न
Find the value of x, y, and z from the following equation:
`[(4,3),(x,5)] = [(y,z),(1,5)]`
`A = [a_(ij)]_(mxxn)` is a square matrix, if ______.
if A = [(1,1,1),(1,1,1),(1,1,1)], Prove that A" = `[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))]` `n in N`
if `A = [(3,-4),(1,-1)]` then prove A"=` [(1+2n, -4n),(n, 1-2n)]` where n is any positive integer
Let A = `((2,-1),(3,4))`, B = `((5,2),(7,4))`, C= `((2,5),(3,8))` find a matrix D such that CD − AB = O
Given two matrices A and B
`A = [(1,-2,3),(1,4,1),(1,-3, 2)] and B = [(11,-5,-14),(-1, -1,2),(-7,1,6)]`
find AB and use this result to solve the following system of equations:
x - 2y + 3z = 6, x + 4x + z = 12, x - 3y + 2z = 1
If A is a square matrix of order 3 with |A| = 4 , then the write the value of |-2A| .
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(10, -15, 27),(-15, 0, sqrt(34)),(27, sqrt(34), 5/3)]`
Identify the following matrix is singular or non-singular?
`[(3, 5, 7),(-2, 1, 4),(3, 2, 5)]`
Find k if the following matrix is singular:
`[(4, 3, 1),(7, "k", 1),(10, 9, 1)]`
Construct the matrix A = [aij]3 × 3 where aij = i − j. State whether A is symmetric or skew-symmetric.
If A = `[(1, 2, 2),(2, 1, 2),(2, 2, 1)]`, Show that A2 – 4A is a scalar matrix
Answer the following question:
If A = `[(1, 2),(3, 2),(-1, 0)]` and B = `[(1, 3, 2),(4, -1, -3)]`, show that AB is singular.
State whether the following statement is True or False:
If A and B are two square matrices such that AB = BA, then (A – B)2 = A2 – 2AB + B2
If A = `[(2, 0, 0),(0, 1, 0),(0, 0, 1)]`, then |adj (A)| = ______
AB = AC ⇒ B = C for any three matrices of same order.
Show by an example that for A ≠ O, B ≠ O, AB = O
If a matrix A is both symmetric and skew symmetric then matrix A is ____________.
`root(3)(4663) + 349` = ? ÷ 21.003
`[(5sqrt(7) + sqrt(7)) + (4sqrt(7) + 8sqrt(7))] - (19)^2` = ?
A matrix is said to be a column matrix if it has
A matrix is said to be a row matrix, if it has
A diagonal matrix is said to be a scalar matrix if its diagonal elements are
A square matrix in which elements in the diagonal are all 1 and rest are all zero is called an
If all the elements are zero, then matrix is said to be
Find X, If `[X - 5 - 1] [(1, 0, 2),(0, 2, 1),(2, 0, 3)][(x),(4),(1)] ` = 0
How many matrices can be obtained by using one or more numbers from four given numbers?
If A is a square matrix of order 3, then |2A| is equal to ______.