Advertisements
Advertisements
Question
A matrix which is both symmetric and skew symmetric matrix is a ______.
Options
triangular matrix
identity matrix
diagonal matrix
null matrix
Solution
A matrix which is both symmetric and skew symmetric matrix is a null matrix.
Explanation:
A matrix that is both symmetric and skew-symmetric must satisfy the properties of both types:
- Symmetric Matrix: A matrix A is symmetric if A = AT, meaning it is equal to its transpose.
- Skew-Symmetric Matrix: A matrix A is skew-symmetric if A = – AT, meaning it is equal to the negative of its transpose.
For a matrix to be both symmetric and skew-symmetric, we have:
A = AT and A = – AT
Combining these, we get:
A = – A
This implies that each element of the matrix must be zero:
Aij = – Aij
2Aij = 0
Aij = 0
Therefore, the only matrix that satisfies both conditions is the null matrix (a matrix where all elements are zero).
APPEARS IN
RELATED QUESTIONS
Let A = `[(0,1),(0,0)]`show that (aI+bA)n = anI + nan-1 bA , where I is the identity matrix of order 2 and n ∈ N
if A = [(1,1,1),(1,1,1),(1,1,1)], Prove that A" = `[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))]` `n in N`
If A = `[(alpha, beta),(gamma, -alpha)]` is such that A2 = I then ______.
Use product `[(1,-1,2),(0,2,-3),(3,-2,4)][(-2,0,1),(9,2,-3),(6,1,-2)]` to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3
If\[A = \begin{bmatrix}2 & 3 \\ 4 & 5\end{bmatrix}\]prove that A − AT is a skew-symmetric matrix.
Show that (A + A') is symmetric matrix, if `A = ((2,4),(3,5))`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(5),(4),(-3)]`
If A = `[(5, 1, -1),(3, 2, 0)]`, Find (AT)T.
If A = `[(7, 3, 1),(-2, -4, 1),(5, 9, 1)]`, Find (AT)T.
If A = `[(1, 2, 2),(2, 1, 2),(2, 2, 1)]`, Show that A2 – 4A is a scalar matrix
If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is unit matrix of order 2
Answer the following question:
If A = `[(1, omega),(omega^2, 1)]`, B = `[(omega^2, 1),(1, omega)]`, where ω is a complex cube root of unity, then show that AB + BA + A −2B is a null matrix
If A = `[(6, 0),("p", "q")]` is a scalar matrix, then the values of p and q are ______ respectively.
Choose the correct alternative:
If B = `[(6, 3),(-2, "k")]` is singular matrix, then the value of k is ______
State whether the following statement is True or False:
If `[(3, 0),(0, 2)][(x),(y)] = [(3),(2)]`, then x = 1 and y = – 1
The matrix A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` is a ______.
AB = AC ⇒ B = C for any three matrices of same order.
For any square matrix A, AAT is a ____________.
If A `= [("cos x", - "sin x"),("sin x", "cos x")]`, find AAT.
The matrix `[(0,5,-7),(-5,0,11),(7,-11,0)]` is ____________.
The matrix A `=[(0,1),(1,0)]` is a ____________.
If `[(1,2),(3,4)],` then A2 - 5A is equal to ____________.
A square matrix B = [bÿ] m × m is said to be a diagonal matrix if all diagonal elements are
If all the elements are zero, then matrix is said to be
If 'A' is square matrix, such that A2 = A, then (7 + A)3 = 7A is equal to
Let A be a 2 × 2 real matrix with entries from {0, 1} and |A| ≠ 0. Consider the following two statements:
(P) If A1I2, then |A| = –1
(Q) If |A| = 1, then tr(A) = 2,
where I2 denotes 2 × 2 identity matrix and tr(A) denotes the sum of the diagonal entries of A. Then ______.
If the sides a, b, c of ΔABC satisfy the equation 4x3 – 24x2 + 47x – 30 = 0 and `|(a^2, (s - a)^2, (s - a)^2),((s - b)^2, b^2, (s - b)^2),((s - c)^2, (s - c)^2, c^2)| = p^2/q` where p and q are co-prime and s is semiperimeter of ΔABC, then the value of (p – q) is ______.
The minimum number of zeros in an upper triangular matrix will be ______.
Let A and B be 3 × 3 real matrices such that A is symmetric matrix and B is skew-symmetric matrix. Then the systems of linear equations (A2B2 – B2A2)X = O, where X is a 3 × 1 column matrix of unknown variables and O is a 3 × 1 null matrix, has ______.
If A = `[(5, x),(y, 0)]` and A = AT, where AT is the transpose of the matrix A, then ______.