English

If A = [31-12], prove that A2 – 5A + 7I = 0, where I is unit matrix of order 2 - Mathematics and Statistics

Advertisements
Advertisements

Question

If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is unit matrix of order 2

Sum

Solution

A2 = A · A = `[(3, 1),(-1, 2)] [(3, 1),(-1, 2)]`

= `[(9 - 1, 3 + 2),(-3 - 2, -1 + 4)]`

= `[(8, 5),(-5, 3)]`

∴ A2 – 5A + 7I = `[(8, 5),(-5, 3)] -5[(3, 1),(-1, 2)] + 7[(1, 0),(0, 1)]`

= `[(8, 5),(-5, 3)] - [(15, 5),(-5, 10)] + [(7, 0),(0, 7)]`

= `[(8 - 15 + 7, 5 - 5 + 0),(-5 + 5 + 0, 3 - 10 + 7)]`

= `[(0, 0),(0, 0)]`

= 0.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Determinants and Matrices - Exercise 4.6 [Page 95]

APPEARS IN

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

 If A is a square matrix such that A2 = I, then find the simplified value of (A – I)3 + (A + I)3 – 7A.


If for any 2 x 2 square matrix A, `A("adj"  "A") = [(8,0), (0,8)]`, then write the value of |A|


Find the value of x, y, and z from the following equation:

`[(4,3),(x,5)] = [(y,z),(1,5)]`


Let A = `((2,-1),(3,4))`, B = `((5,2),(7,4))`, C= `((2,5),(3,8))` find a matrix D such that CD − AB = O


if the matrix A =`[(0,a,-3),(2,0,-1),(b,1,0)]` is skew symmetric, Find the value of 'a' and 'b'


Show that a matrix A = `1/2[(sqrt2,-isqrt2,0),(isqrt2,-sqrt2,0),(0,0,2)]` is unitary.


Using coding matrix A=`[(2,1),(3,1)]` encode the message THE CROW FLIES AT MIDNIGHT.


Find the non-singular matrices P & Q such that PAQ is in normal form where`[(1,2,3,4),(2,1,4,3),(3,0,5,-10)]`

 


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(3, -2, 4),(0, 0, -5),(0, 0, 0)]`


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(0, 4, 7),(-4, 0, -3),(-7, 3, 0)]`


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(2, 0, 0),(3, -1, 0),(-7, 3, 1)]`


Identify the following matrix is singular or non-singular?

`[(3, 5, 7),(-2, 1, 4),(3, 2, 5)]`


Find k if the following matrix is singular:

`[("k" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`


If A = `[(7, 3, 1),(-2, -4, 1),(5, 9, 1)]`, Find (AT)T.


If A = `[(1, 2, 2),(2, 1, 2),(2, 2, 1)]`, Show that A2 – 4A is a scalar matrix 


Select the correct option from the given alternatives:

If A and B are square matrices of equal order, then which one is correct among the following?


Answer the following question:

If A = diag [2 –3 –5], B = diag [4 –6 –3] and C = diag [–3 4 1] then find B + C – A


Answer the following question:

If A = `[(1, 2, 3),(2, 4, 6),(1, 2, 3)]`, B = `[(1, -1, 1),(-3, 2, -1),(-2, 1, 0)]`, show that AB and BA are both singular matrices


Answer the following question:

If A = `[(1, omega),(omega^2, 1)]`, B = `[(omega^2, 1),(1, omega)]`, where ω is a complex cube root of unity, then show that AB + BA + A −2B is a null matrix


If A = `[(6, 0),("p", "q")]` is a scalar matrix, then the values of p and q are ______ respectively.


If A = `[(3, 1),(-1, 2)]`, then prove that A2 – 5A + 7I = O, where I is unit matrix of order 2


If A = `[(1, 3, 3),(3, 1, 3),(3, 3, 1)]`, then show that A2 – 5A is a scalar matrix


The matrix A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` is a ______.


AB = AC ⇒ B = C for any three matrices of same order.


If A = `[(3, -4),(1, 1),(2, 0)]` and B = `[(2, 1, 2),(1, 2, 4)]`, then verify (BA)2 ≠ B2A2 


If A = `[(0,0,0),(0,0,0),(0,1,0)]` then A is ____________.


A square matrix A = [aij]nxn is called a diagonal matrix if aij = 0 for ____________.


If the matrix A `= [(5,2,"x"),("y",2,-3),(4, "t",-7)]` is a symmetric matrix, then find the value of x, y and t respectively.


The matrix `[(0,5,-7),(-5,0,11),(7,-11,0)]` is ____________.


The matrix A `=[(0,1),(1,0)]` is a ____________.


A matrix is said to be a column matrix if it has


A matrix is said to be a row matrix, if it has


A diagonal matrix is said to be a scalar matrix if its diagonal elements are


If all the elements are zero, then matrix is said to be


A = `[a_(ij)]_(m xx n)` is a square matrix, if


Let A and B be 3 × 3 real matrices such that A is symmetric matrix and B is skew-symmetric matrix. Then the systems of linear equations (A2B2 – B2A2)X = O, where X is a 3 × 1 column matrix of unknown variables and O is a 3 × 1 null matrix, has ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×