English

AB = AC ⇒ B = C for any three matrices of same order. - Mathematics

Advertisements
Advertisements

Question

AB = AC ⇒ B = C for any three matrices of same order.

Options

  • True

  • False

MCQ
True or False

Solution

This statement is False.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Matrices - Solved Examples [Page 52]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 3 Matrices
Solved Examples | Q 19 | Page 52

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If A is a square matrix, such that A2=A, then write the value of 7A(I+A)3, where I is an identity matrix.


Find the value of x, y, and z from the following equation:

`[(x+y+z), (x+z), (y+z)] = [(9),(5),(7)]`


In a certain city there are 30 colleges. Each college has 15 peons, 6 clerks, 1 typist and 1 section officer. Express the given information as a column matrix. Using scalar multiplication, find the total number of posts of each kind in all the colleges.


Find the non-singular matrices P & Q such that PAQ is in normal form where`[(1,2,3,4),(2,1,4,3),(3,0,5,-10)]`

 


Investigate for what values of λ and μ the equations
2x + 3y + 5z = 9
7x + 3y - 2z = 8
2x + 3y + λz = μ have
A. No solutions
B. Unique solutions
C. An infinite number of solutions.


If A is a square matrix of order 3 with |A| = 4 , then the write the value of |-2A| . 


Identify the following matrix is singular or non-singular?

`[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]`


Find k if the following matrix is singular:

`[("k" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`


If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is unit matrix of order 2


Select the correct option from the given alternatives:

If A and B are square matrices of equal order, then which one is correct among the following?


Answer the following question:

If A = `[(1, 2),(3, 2),(-1, 0)]` and B = `[(1, 3, 2),(4, -1, -3)]`, show that AB is singular.


Answer the following question:

If A = `[(1, 2, 3),(2, 4, 6),(1, 2, 3)]`, B = `[(1, -1, 1),(-3, 2, -1),(-2, 1, 0)]`, show that AB and BA are both singular matrices


Answer the following question:

If A = `[(1, omega),(omega^2, 1)]`, B = `[(omega^2, 1),(1, omega)]`, where ω is a complex cube root of unity, then show that AB + BA + A −2B is a null matrix


Choose the correct alternative:

If B = `[(6, 3),(-2, "k")]` is singular matrix, then the value of k is ______


State whether the following statement is True or False:

If A is non singular, then |A| = 0


If A = `[(3, 1),(-1, 2)]`, then prove that A2 – 5A + 7I = O, where I is unit matrix of order 2


The matrix A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` is a ______.


A square matrix A = [aij]nxn is called a diagonal matrix if aij = 0 for ____________.


If A is a square matrix, then A – A’ is a ____________.


If A `= [("cos x", - "sin x"),("sin x", "cos x")]`, find AAT.


If A is a square matrix such that A2 = A, then (I + A)2 - 3A is ____________.


If a matrix A is both symmetric and skew symmetric then matrix A is ____________.


Let A = `[(0, -2),(2, 0)]`. If M and N are two matrices given by M = `sum_(k = 1)^10 A^(2k)` and N = `sum_(k = 1)^10 A^(2k - 1)` then MN2 is ______.


Let A and B be 3 × 3 real matrices such that A is symmetric matrix and B is skew-symmetric matrix. Then the systems of linear equations (A2B2 – B2A2)X = O, where X is a 3 × 1 column matrix of unknown variables and O is a 3 × 1 null matrix, has ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×