Advertisements
Advertisements
Question
Find k if the following matrix is singular:
`[("k" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`
Solution
Let C = `[("k" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`
Since C is a singular matrix, ICI = 0
∴ `|("k" - 1, 2, 3),(3, 1, 2),(1, -2, 4)|` = 0
∴ (k – 1)(4 + 4) – 2(12 – 2) + 3( – 6 – 1) = 0
∴ 8k – 8 – 20 – 21 = 0
∴ 8k = 49
∴ k = `49/8`
APPEARS IN
RELATED QUESTIONS
Find the value of x, y, and z from the following equation:
`[(x+y+z), (x+z), (y+z)] = [(9),(5),(7)]`
if `A = [(0, -tan alpha/2), (tan alpha/2, 0)]` and I is the identity matrix of order 2, show that I + A = `(I -A)[(cos alpha, -sin alpha),(sin alpha, cos alpha)]`
Use product `[(1,-1,2),(0,2,-3),(3,-2,4)][(-2,0,1),(9,2,-3),(6,1,-2)]` to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3
In a certain city there are 30 colleges. Each college has 15 peons, 6 clerks, 1 typist and 1 section officer. Express the given information as a column matrix. Using scalar multiplication, find the total number of posts of each kind in all the colleges.
If A and B are square matrices of order 3 such that |A| = –1, |B| = 3, then find the value of |2AB|.
A coaching institute of English (subject) conducts classes in two batches I and II and fees for rich and poor children are different. In batch I, it has 20 poor and 5 rich children and total monthly collection is Rs 9,000, whereas in batch II, it has 5 poor and 25 rich children and total monthly collection is Rs 26,000. Using matrix method, find monthly fees paid by each child of two types. What values the coaching institute is inculcating in the society?
Find the non-singular matrices P & Q such that PAQ is in normal form where`[(1,2,3,4),(2,1,4,3),(3,0,5,-10)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(3, -2, 4),(0, 0, -5),(0, 0, 0)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(6, 0),(0, 6)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(10, -15, 27),(-15, 0, sqrt(34)),(27, sqrt(34), 5/3)]`
Identify the following matrix is singular or non-singular?
`[(5, 0, 5),(1, 99, 100),(6, 99, 105)]`
Identify the following matrix is singular or non-singular?
`[(7, 5),(-4, 7)]`
Find k if the following matrix is singular:
`[(7, 3),(-2, "k")]`
Find k if the following matrix is singular:
`[(4, 3, 1),(7, "k", 1),(10, 9, 1)]`
The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:
`[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`
Answer the following question:
If A = `[(1, 2, 3),(2, 4, 6),(1, 2, 3)]`, B = `[(1, -1, 1),(-3, 2, -1),(-2, 1, 0)]`, show that AB and BA are both singular matrices
State whether the following statement is True or False:
If `[(3, 0),(0, 2)][(x),(y)] = [(3),(2)]`, then x = 1 and y = – 1
State whether the following statement is True or False:
If A and B are two square matrices such that AB = BA, then (A – B)2 = A2 – 2AB + B2
If A and B are matrices of same order, then (3A –2B)′ is equal to______.
For the non singular matrix A, (A′)–1 = (A–1)′.
AB = AC ⇒ B = C for any three matrices of same order.
If A = `[(3, -4),(1, 1),(2, 0)]` and B = `[(2, 1, 2),(1, 2, 4)]`, then verify (BA)2 ≠ B2A2
A square matrix A = [aij]nxn is called a diagonal matrix if aij = 0 for ____________.
If A is a square matrix, then A – A’ is a ____________.
For any square matrix A, AAT is a ____________.
If a matrix A is both symmetric and skew-symmetric, then ____________.
If `[(1,2),(3,4)],` then A2 - 5A is equal to ____________.
If A is a square matrix such that A2 = A, then (I + A)2 - 3A is ____________.
A matrix is said to be a column matrix if it has
A diagonal matrix is said to be a scalar matrix if its diagonal elements are
A square matrix in which elements in the diagonal are all 1 and rest are all zero is called an
If all the elements are zero, then matrix is said to be
If 'A' is square matrix, such that A2 = A, then (7 + A)3 = 7A is equal to
A diagonal matrix in which all diagonal elements are same, is called a ______ matrix.
The minimum number of zeros in an upper triangular matrix will be ______.
Let A = `[(0, -2),(2, 0)]`. If M and N are two matrices given by M = `sum_(k = 1)^10 A^(2k)` and N = `sum_(k = 1)^10 A^(2k - 1)` then MN2 is ______.
If A = `[(0, -tan θ/2),(tan θ/2, 0)]` and (I2 + A) (I2 – A)–1 = `[(a, -b),(b, a)]` then 13(a2 + b2) is equal to ______.