Advertisements
Advertisements
Question
If A and B are square matrices of order 3 such that |A| = –1, |B| = 3, then find the value of |2AB|.
Solution
\[\left| K A \right| = K^n \left| A \right| \left[ \text { n is the order of A } \right]\]
\[ \Rightarrow \left| 2AB \right| = 2^3 \left| AB \right| . . . (1)\]
\[\text { If A and B are square matrices of the same order, then } \left| AB \right| = \left| A \right| \left| B \right| . So, \]
\[\left| 2AB \right| = 2^3 \left| A \right| \left| B \right| \left[ \text { From } (1) \right]\]
\[ = 8 \times - 1 \times 3\]
\[ = - 24\]
APPEARS IN
RELATED QUESTIONS
Find the value of x, y, and z from the following equation:
`[(x+y+z), (x+z), (y+z)] = [(9),(5),(7)]`
if A = [(1,1,1),(1,1,1),(1,1,1)], Prove that A" = `[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))]` `n in N`
If A is a square matrix such that A2 = A, then (I + A)3 – 7 A is equal to ______.
Determine the product `[(-4,4,4),(-7,1,3),(5,-3,-1)][(1,-1,1),(1,-2,-2),(2,1,3)]` and use it to solve the system of equations x - y + z = 4, x- 2y- 2z = 9, 2x + y + 3z = 1.
Given `A = [(2,-3),(-4,7)]` compute `A^(-1)` and show that `2A^(-1) = 9I - A`
Show that a matrix A = `1/2[(sqrt2,-isqrt2,0),(isqrt2,-sqrt2,0),(0,0,2)]` is unitary.
Find the non-singular matrices P & Q such that PAQ is in normal form where`[(1,2,3,4),(2,1,4,3),(3,0,5,-10)]`
If li, mi, ni, i = 1, 2, 3 denote the direction cosines of three mutually perpendicular vectors in space, prove that AAT = I, where \[A = \begin{bmatrix}l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3\end{bmatrix}\]
If A and B are square matrices of the same order 3, such that ∣A∣ = 2 and AB = 2I, write the value of ∣B∣.
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(3, -2, 4),(0, 0, -5),(0, 0, 0)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[9 sqrt(2) -3]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(3, 0, 0),(0, 5, 0),(0, 0, 1/3)]`
Identify the following matrix is singular or non-singular?
`[(5, 0, 5),(1, 99, 100),(6, 99, 105)]`
Identify the following matrix is singular or non-singular?
`[(3, 5, 7),(-2, 1, 4),(3, 2, 5)]`
Find k if the following matrix is singular:
`[(7, 3),(-2, "k")]`
The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:
`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`
Construct the matrix A = [aij]3 × 3 where aij = i − j. State whether A is symmetric or skew-symmetric.
If A = `[(1, 2, 2),(2, 1, 2),(2, 2, 1)]`, Show that A2 – 4A is a scalar matrix
Answer the following question:
If A = diag [2 –3 –5], B = diag [4 –6 –3] and C = diag [–3 4 1] then find B + C – A
Answer the following question:
If A = `[(1, 2),(3, 2),(-1, 0)]` and B = `[(1, 3, 2),(4, -1, -3)]`, show that AB is singular.
If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.
2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`
If a matrix A is both symmetric and skew-symmetric, then ____________.
If A is a square matrix such that A2 = A, then (I + A)2 - 3A is ____________.
`root(3)(4663) + 349` = ? ÷ 21.003
A matrix is said to be a row matrix, if it has
Let A be a 2 × 2 real matrix with entries from {0, 1} and |A| ≠ 0. Consider the following two statements:
(P) If A1I2, then |A| = –1
(Q) If |A| = 1, then tr(A) = 2,
where I2 denotes 2 × 2 identity matrix and tr(A) denotes the sum of the diagonal entries of A. Then ______.
If D = `[(0, aα^2, aβ^2),(bα + c, 0, aγ^2),(bβ + c, (bγ + c), 0)]` is a skew-symmetric matrix (where α, β, γ are distinct) and the value of `|((a + 1)^2, (1 - a), (2 - c)),((3 + c), (b + 2)^2, (b + 1)^2),((3 - b)^2, b^2, (c + 3))|` is λ then the value of |10λ| is ______.
If A is a square matrix of order 3, then |2A| is equal to ______.