Advertisements
Advertisements
प्रश्न
If A and B are square matrices of order 3 such that |A| = –1, |B| = 3, then find the value of |2AB|.
उत्तर
\[\left| K A \right| = K^n \left| A \right| \left[ \text { n is the order of A } \right]\]
\[ \Rightarrow \left| 2AB \right| = 2^3 \left| AB \right| . . . (1)\]
\[\text { If A and B are square matrices of the same order, then } \left| AB \right| = \left| A \right| \left| B \right| . So, \]
\[\left| 2AB \right| = 2^3 \left| A \right| \left| B \right| \left[ \text { From } (1) \right]\]
\[ = 8 \times - 1 \times 3\]
\[ = - 24\]
APPEARS IN
संबंधित प्रश्न
Find the value of x, y, and z from the following equation:
`[(4,3),(x,5)] = [(y,z),(1,5)]`
`A = [a_(ij)]_(mxxn)` is a square matrix, if ______.
if `A = [(0, -tan alpha/2), (tan alpha/2, 0)]` and I is the identity matrix of order 2, show that I + A = `(I -A)[(cos alpha, -sin alpha),(sin alpha, cos alpha)]`
Find the matrix X so that X`[(1,2,3),(4,5,6)]= [(-7,-8,-9),(2,4,6)]`
Given `A = [(2,-3),(-4,7)]` compute `A^(-1)` and show that `2A^(-1) = 9I - A`
Choose the correct alternative.
The matrix `[(8, 0, 0),(0, 8, 0),(0, 0, 8)]` is _______
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[9 sqrt(2) -3]`
Identify the following matrix is singular or non-singular?
`[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]`
Find k if the following matrix is singular:
`[(7, 3),(-2, "k")]`
Find k if the following matrix is singular:
`[(4, 3, 1),(7, "k", 1),(10, 9, 1)]`
Find k if the following matrix is singular:
`[("k" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`
Find x, y, z If `[(0, -5"i", x),(y, 0, z),(3/2, -sqrt(2), 0)]` is a skew symmetric matrix.
The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:
`[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`
Construct the matrix A = [aij]3 × 3 where aij = i − j. State whether A is symmetric or skew-symmetric.
Answer the following question:
If A = diag [2 –3 –5], B = diag [4 –6 –3] and C = diag [–3 4 1] then find 2A + B – 5C
State whether the following statement is True or False:
If A and B are two square matrices such that AB = BA, then (A – B)2 = A2 – 2AB + B2
Given A = `[(2, 4, 0),(3, 9, 6)]` and B = `[(1, 4),(2, 8),(1, 3)]` is (AB)′ = B′A′?
If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.
2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`
A square matrix A = [aij]nxn is called a diagonal matrix if aij = 0 for ____________.
If A `= [("cos x", - "sin x"),("sin x", "cos x")]`, find AAT.
If `[(1,2),(3,4)],` then A2 - 5A is equal to ____________.
If a matrix A is both symmetric and skew symmetric then matrix A is ____________.
`root(3)(4663) + 349` = ? ÷ 21.003
If all the elements are zero, then matrix is said to be
If 'A' is square matrix, such that A2 = A, then (7 + A)3 = 7A is equal to
Find X, If `[X - 5 - 1] [(1, 0, 2),(0, 2, 1),(2, 0, 3)][(x),(4),(1)] ` = 0
If D = `[(0, aα^2, aβ^2),(bα + c, 0, aγ^2),(bβ + c, (bγ + c), 0)]` is a skew-symmetric matrix (where α, β, γ are distinct) and the value of `|((a + 1)^2, (1 - a), (2 - c)),((3 + c), (b + 2)^2, (b + 1)^2),((3 - b)^2, b^2, (c + 3))|` is λ then the value of |10λ| is ______.
A matrix which is both symmetric and skew symmetric matrix is a ______.