Advertisements
Advertisements
प्रश्न
Answer the following question:
If A = diag [2 –3 –5], B = diag [4 –6 –3] and C = diag [–3 4 1] then find 2A + B – 5C
उत्तर
A = diag [2 –3 –5]
∴ A = `[(2, 0, 0),(0, -3, 0),(0, 0, -5)]`
B = diag [4 –6 –3]
∴ B = `[(4, 0, 0),(0, -6, 0),(0, 0, -3)]`
C = diag [–3 4 1]
∴ C = `[(-3, 0, 0),(0, 4, 0),(0, 0, 1)]`
2A + B – 5C = 2 diag [2 – 3 – 5] + diag [4 – 6 – 3] – 5 diag [ –3 4 1]
`= 2[(2, 0, 0),(0, -3, 0),(0, 0, -5)] + [(4, 0, 0),(0, -6, 0),(0, 0, -3)] -5[(-3, 0, 0),(0, 4, 0),(0, 0, 1)]`
`= [(4, 0, 0),(0, -6, 0),(0, 0, -10)] + [(4, 0, 0),(0, -6, 0),(0, 0, -3)] - [(-15, 0, 0),(0, 20, 0),(0, 0, 5)]`
`= [(4 + 4 - (-15), 0, 0),(0, -6 - 6 - 20, 0),(0, 0, -10 - 3 - 5)]`
`= [(23, 0, 0),(0, -32, 0),(0, 0, -18)]`
= diag [23 – 32 – 18].
APPEARS IN
संबंधित प्रश्न
If A is a square matrix, such that A2=A, then write the value of 7A−(I+A)3, where I is an identity matrix.
Find the value of x, y, and z from the following equation:
`[(x+y, 2),(5+z, xy)] = [(6,2), (5,8)]`
if A = [(1,1,1),(1,1,1),(1,1,1)], Prove that A" = `[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))]` `n in N`
if `A = [(3,-4),(1,-1)]` then prove A"=` [(1+2n, -4n),(n, 1-2n)]` where n is any positive integer
Find the matrix X so that X`[(1,2,3),(4,5,6)]= [(-7,-8,-9),(2,4,6)]`
If A and B are square matrices of order 3 such that |A| = –1, |B| = 3, then find the value of |2AB|.
A coaching institute of English (subject) conducts classes in two batches I and II and fees for rich and poor children are different. In batch I, it has 20 poor and 5 rich children and total monthly collection is Rs 9,000, whereas in batch II, it has 5 poor and 25 rich children and total monthly collection is Rs 26,000. Using matrix method, find monthly fees paid by each child of two types. What values the coaching institute is inculcating in the society?
Using coding matrix A=`[(2,1),(3,1)]` encode the message THE CROW FLIES AT MIDNIGHT.
Find the non-singular matrices P & Q such that PAQ is in normal form where`[(1,2,3,4),(2,1,4,3),(3,0,5,-10)]`
If\[A = \begin{bmatrix}2 & 3 \\ 4 & 5\end{bmatrix}\]prove that A − AT is a skew-symmetric matrix.
If A = `[[0 , 2],[3, -4]]` and kA = `[[0 , 3"a"],[2"b", 24]]` then find the value of k,a and b.
Choose the correct alternative.
The matrix `[(8, 0, 0),(0, 8, 0),(0, 0, 8)]` is _______
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(2, 0, 0),(3, -1, 0),(-7, 3, 1)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
Identify the following matrix is singular or non-singular?
`[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]`
Identify the following matrix is singular or non-singular?
`[(7, 5),(-4, 7)]`
Find k if the following matrix is singular:
`[("k" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`
If A = `[(5, 1, -1),(3, 2, 0)]`, Find (AT)T.
If A = `[(7, 3, 1),(-2, -4, 1),(5, 9, 1)]`, Find (AT)T.
Construct the matrix A = [aij]3 × 3 where aij = i − j. State whether A is symmetric or skew-symmetric.
If A = `[(1, 2, 2),(2, 1, 2),(2, 2, 1)]`, Show that A2 – 4A is a scalar matrix
Select the correct option from the given alternatives:
If A and B are square matrices of equal order, then which one is correct among the following?
Answer the following question:
If A = `[(1, 2),(3, 2),(-1, 0)]` and B = `[(1, 3, 2),(4, -1, -3)]`, show that AB is singular.
Answer the following question:
If A = `[(1, 2, 3),(2, 4, 6),(1, 2, 3)]`, B = `[(1, -1, 1),(-3, 2, -1),(-2, 1, 0)]`, show that AB and BA are both singular matrices
State whether the following statement is True or False:
If `[(3, 0),(0, 2)][(x),(y)] = [(3),(2)]`, then x = 1 and y = – 1
State whether the following statement is True or False:
If A and B are two square matrices such that AB = BA, then (A – B)2 = A2 – 2AB + B2
If A = `[(0,0,0),(0,0,0),(0,1,0)]` then A is ____________.
A square matrix A = [aij]nxn is called a diagonal matrix if aij = 0 for ____________.
If `[("a","b"),("c", "-a")]`is a square root of the 2 x 2 identity matrix, then a, b, c satisfy the relation ____________.
If a matrix A is both symmetric and skew-symmetric, then ____________.
The matrix A `=[(0,1),(1,0)]` is a ____________.
A matrix is said to be a row matrix, if it has
A = `[a_(ij)]_(m xx n)` is a square matrix, if
The number of all possible matrices of order 3/3, with each entry 0 or 1 is
A diagonal matrix in which all diagonal elements are same, is called a ______ matrix.
If `A = [(1,-1,2),(0,-1,3)], B = [(-2,1),(3,-1),(0,2)],` then AB is a singular matrix.