हिंदी

Identify the following matrix is singular or non-singular? [75-47] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Identify the following matrix is singular or non-singular?

`[(7, 5),(-4, 7)]`

योग

उत्तर

Let A = `[(7, 5),(-4, 7)]`

∴ |A| = `|(7, 5),(-4, 7)|`

= 49 + 20

= 69 ≠ 0

∴ A is a non-singular matrix.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Determinants and Matrices - Exercise 4.4 [पृष्ठ ८३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 4 Determinants and Matrices
Exercise 4.4 | Q 3. (iv) | पृष्ठ ८३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If A is a square matrix, such that A2=A, then write the value of 7A(I+A)3, where I is an identity matrix.


Find the value of x, y, and z from the following equation:

`[(x+y, 2),(5+z, xy)] = [(6,2), (5,8)]`


Find the value of a, b, c, and d from the equation:

`[(a-b, 2a+c),(2a-b, 3x+d)] = [(-1,5),(0,13)]`


Find the matrix X so that  X`[(1,2,3),(4,5,6)]= [(-7,-8,-9),(2,4,6)]`


A coaching institute of English (subject) conducts classes in two batches I and II and fees for rich and poor children are different. In batch I, it has 20 poor and 5 rich children and total monthly collection is Rs 9,000, whereas in batch II, it has 5 poor and 25 rich children and total monthly collection is Rs 26,000. Using matrix method, find monthly fees paid by each child of two types. What values the coaching institute is inculcating in the society?


Investigate for what values of λ and μ the equations
2x + 3y + 5z = 9
7x + 3y - 2z = 8
2x + 3y + λz = μ have
A. No solutions
B. Unique solutions
C. An infinite number of solutions.


if  `vec"a"= 2hat"i" + 3hat"j"+ hat"k", vec"b" = hat"i" -2hat"j" + hat"k" and vec"c" = -3hat"i" + hat"j" + 2hat"k", "find" [vec"a" vec"b" vec"c"]`


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[9   sqrt(2)  -3]`


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`


Identify the following matrix is singular or non-singular?

`[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]`


Find k if the following matrix is singular:

`[("k" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`


If A = `[(7, 3, 1),(-2, -4, 1),(5, 9, 1)]`, Find (AT)T.


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`


Answer the following question:

If A = diag [2 –3 –5], B = diag [4 –6 –3] and C = diag [–3 4 1] then find 2A + B – 5C


Answer the following question:

If A = `[(1, 2, 3),(2, 4, 6),(1, 2, 3)]`, B = `[(1, -1, 1),(-3, 2, -1),(-2, 1, 0)]`, show that AB and BA are both singular matrices


Answer the following question:

If A = `[(1, omega),(omega^2, 1)]`, B = `[(omega^2, 1),(1, omega)]`, where ω is a complex cube root of unity, then show that AB + BA + A −2B is a null matrix


State whether the following statement is True or False:

If A is non singular, then |A| = 0


If A is a square matrix of order 2 such that A(adj A) = `[(7, 0),(0, 7)]`, then |A| = ______


If A = `[(3, -4),(1, 1),(2, 0)]` and B = `[(2, 1, 2),(1, 2, 4)]`, then verify (BA)2 ≠ B2A2 


Show by an example that for A ≠ O, B ≠ O, AB = O


If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.

2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`


For any square matrix A, AAT is a ____________.


The matrix `[(0,-5,8),(5,0,12),(-8,-12,0)]`  is a ____________.


`root(3)(4663) + 349` = ? ÷ 21.003


`[(5sqrt(7) + sqrt(7)) + (4sqrt(7) + 8sqrt(7))] - (19)^2` = ?


A matrix is said to be a column matrix if it has


A = `[a_(ij)]_(m xx n)` is a square matrix, if


If 'A' is square matrix, such that A2 = A, then (7 + A)3 = 7A is equal to


Find X, If `[X - 5 - 1] [(1, 0, 2),(0, 2, 1),(2, 0, 3)][(x),(4),(1)] ` = 0


If D = `[(0, aα^2, aβ^2),(bα + c, 0, aγ^2),(bβ + c, (bγ + c), 0)]` is a skew-symmetric matrix (where α, β, γ are distinct) and the value of `|((a + 1)^2, (1 - a), (2 - c)),((3 + c), (b + 2)^2, (b + 1)^2),((3 - b)^2, b^2, (c + 3))|` is λ then the value of |10λ| is ______.


The minimum number of zeros in an upper triangular matrix will be ______.


If A and B are square matrices of order 3 × 3 and |A| = –1, |B| = 3, then |3AB| equals ______.


Assertion: Let the matrices A = `((-3, 2),(-5, 4))` and B = `((4, -2),(5, -3))` be such that A100B = BA100

Reason: AB = BA implies AB = BA for all positive integers n.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×