हिंदी

Answer the following question: If A = [123246123], B = [1-11-32-1-210], show that AB and BA are both singular matrices - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following question:

If A = `[(1, 2, 3),(2, 4, 6),(1, 2, 3)]`, B = `[(1, -1, 1),(-3, 2, -1),(-2, 1, 0)]`, show that AB and BA are both singular matrices

योग

उत्तर

AB = `[(1, 2, 3),(2, 4, 6),(1, 2, 3)] [(1, -1, 1),(-3, 2, -1),(-2, 1, 0)]`

= `[(1 - 6 - 6, -1 + 4 + 3, 1 - 2+ 0),(2 - 12 - 12, -2 + 8 + 6, 2 - 4 + 0),(1 - 6 - 6, -1 + 4 + 3, 1 - 2 + 0)]`

= `[(-11, 6, -1),(-22, 12, -2),(-11, 6, -1)]`

∴ |AB| = `|(-11, 6, -1),(-22, 12, -2),(-11, 6, -1)|`

= 0  ...[∵ R1 and R3 are identical]

∴ AB is a singular matrix

BA = `[(1, -1, 1),(-3, 2, -1),(-2, 1, 0)] [(1, 2, 3),(2, 4, 6),(1, 2, 3)]`

= `[(1 - 2 + 1, 2 - 4 + 2, 3 - 6 + 3),(-3 + 4 - 1, -6 + 8 - 2, -9 + 12 - 3),(-2 + 2 + 0, -4 + 4 + 0, -6 + 6 + 0)]`

= `[(0, 0, 0),(0, 0, 0),(0, 0, 0)]`

∴ |BA| = 0

∴ BA is a singular matrix.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Determinants and Matrices - Miscellaneous Exercise 4(B) [पृष्ठ १०१]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 4 Determinants and Matrices
Miscellaneous Exercise 4(B) | Q II. (7) | पृष्ठ १०१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the value of x, y, and z from the following equation:

`[(x+y, 2),(5+z, xy)] = [(6,2), (5,8)]`


`A = [a_(ij)]_(mxxn)` is a square matrix, if ______.


Find the matrix X so that  X`[(1,2,3),(4,5,6)]= [(-7,-8,-9),(2,4,6)]`


In a certain city there are 30 colleges. Each college has 15 peons, 6 clerks, 1 typist and 1 section officer. Express the given information as a column matrix. Using scalar multiplication, find the total number of posts of each kind in all the colleges.


Find the non-singular matrices P & Q such that PAQ is in normal form where`[(1,2,3,4),(2,1,4,3),(3,0,5,-10)]`

 


If liminii = 1, 2, 3 denote the direction cosines of three mutually perpendicular vectors in space, prove that AAT = I, where \[A = \begin{bmatrix}l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3\end{bmatrix}\]


Show that (A + A') is symmetric matrix, if `A = ((2,4),(3,5))`


If A is a square matrix of order 3 with |A| = 4 , then the write the value of |-2A| . 


If A = `[[0 , 2],[3, -4]]` and kA = `[[0 , 3"a"],[2"b", 24]]` then find the value of k,a and b.


Identify the following matrix is singular or non-singular?

`[(3, 5, 7),(-2, 1, 4),(3, 2, 5)]`


Identify the following matrix is singular or non-singular?

`[(7, 5),(-4, 7)]`


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`


Construct the matrix A = [aij]3 × 3 where aij = i − j. State whether A is symmetric or skew-symmetric.


If A = `[(1, 2, 2),(2, 1, 2),(2, 2, 1)]`, Show that A2 – 4A is a scalar matrix 


If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is unit matrix of order 2


Select the correct option from the given alternatives:

If A and B are square matrices of equal order, then which one is correct among the following?


Answer the following question:

If A = `[(1, omega),(omega^2, 1)]`, B = `[(omega^2, 1),(1, omega)]`, where ω is a complex cube root of unity, then show that AB + BA + A −2B is a null matrix


If A = `[(6, 0),("p", "q")]` is a scalar matrix, then the values of p and q are ______ respectively.


Choose the correct alternative:

If B = `[(6, 3),(-2, "k")]` is singular matrix, then the value of k is ______


Choose the correct alternative:

If A = `[(2, 0),(0, 2)]`, then A2 – 3I = ______


If A = `[(2, 0, 0),(0, 1, 0),(0, 0, 1)]`, then |adj (A)| = ______


The matrix A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` is a ______.


If A and B are matrices of same order, then (3A –2B)′ is equal to______.


AB = AC ⇒ B = C for any three matrices of same order.


If A = `[(3, -4),(1, 1),(2, 0)]` and B = `[(2, 1, 2),(1, 2, 4)]`, then verify (BA)2 ≠ B2A2 


Show by an example that for A ≠ O, B ≠ O, AB = O


If `[(1,2),(3,4)],` then A2 - 5A is equal to ____________.


If A is a square matrix such that A2 = A, then (I + A)2 - 3A is ____________.


A square matrix B = [bÿ] m × m is said to be a diagonal matrix if all diagonal elements are


If all the elements are zero, then matrix is said to be


Find X, If `[X - 5 - 1] [(1, 0, 2),(0, 2, 1),(2, 0, 3)][(x),(4),(1)] ` = 0


A diagonal matrix in which all diagonal elements are same, is called a ______ matrix.


Let A be a 2 × 2 real matrix with entries from {0, 1} and |A| ≠ 0. Consider the following two statements:

(P) If A1I2, then |A| = –1

(Q) If |A| = 1, then tr(A) = 2,

where I2 denotes 2 × 2 identity matrix and tr(A) denotes the sum of the diagonal entries of A. Then ______.


The minimum number of zeros in an upper triangular matrix will be ______.


How many matrices can be obtained by using one or more numbers from four given numbers?


Let A = `[(0, -2),(2, 0)]`. If M and N are two matrices given by M = `sum_(k = 1)^10 A^(2k)` and N = `sum_(k = 1)^10 A^(2k - 1)` then MN2 is ______.


If A = `[(0, -tan  θ/2),(tan  θ/2, 0)]` and (I2 + A) (I2 – A)–1 = `[(a, -b),(b, a)]` then 13(a2 + b2) is equal to ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×