हिंदी

A=[aij]m×n is a square matrix, if ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`A = [a_(ij)]_(mxxn)` is a square matrix, if ______.

विकल्प

  • m < n

  • m > n

  • m = n

  • None of these

MCQ
रिक्त स्थान भरें

उत्तर

`A = [a_(ij)]_(mxxn)` is a square matrix, if m = n.

Explanation:

It is known that a given matrix is said to be a square matrix if the number of rows is equal to the number of columns.

Therefore, `A = [a_(ij)]_(mxxn)` is a square matrix, if m = n.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Matrices - Exercise 3.1 [पृष्ठ ६५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 3 Matrices
Exercise 3.1 | Q 8 | पृष्ठ ६५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If A is a square matrix, such that A2=A, then write the value of 7A(I+A)3, where I is an identity matrix.


Let A = `[(0,1),(0,0)]`show that (aI+bA)n  = anI + nan-1 bA , where I is the identity matrix of order 2 and n ∈ N


if `A = [(3,-4),(1,-1)]` then prove A"=` [(1+2n, -4n),(n, 1-2n)]` where n is any positive integer


If A and B are square matrices of the same order such that AB = BA, then prove by induction that AB" = B"A. Further, prove that (AB)" = A"B" for all n ∈ N


If A = `[(alpha, beta),(gamma, -alpha)]` is such that A2 = I then ______.


In a certain city there are 30 colleges. Each college has 15 peons, 6 clerks, 1 typist and 1 section officer. Express the given information as a column matrix. Using scalar multiplication, find the total number of posts of each kind in all the colleges.


If 𝒙 = r cos θ and y= r sin θ prove that JJ-1=1.


if  `vec"a"= 2hat"i" + 3hat"j"+ hat"k", vec"b" = hat"i" -2hat"j" + hat"k" and vec"c" = -3hat"i" + hat"j" + 2hat"k", "find" [vec"a" vec"b" vec"c"]`


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(0, 0, 1),(0, 1, 0),(1, 0, 0)]`


Identify the following matrix is singular or non-singular?

`[(5, 0, 5),(1, 99, 100),(6, 99, 105)]`


Find k if the following matrix is singular:

`[("k" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`


If A = `[(1, 0),(-1, 7)]`, find k so that A2 – 8A – kI = O, where I is a unit matrix and O is a null matrix of order 2.


Answer the following question:

If A = diag [2 –3 –5], B = diag [4 –6 –3] and C = diag [–3 4 1] then find 2A + B – 5C


Answer the following question:

If A = `[(1, omega),(omega^2, 1)]`, B = `[(omega^2, 1),(1, omega)]`, where ω is a complex cube root of unity, then show that AB + BA + A −2B is a null matrix


State whether the following statement is True or False:

If `[(3, 0),(0, 2)][(x),(y)] = [(3),(2)]`, then x = 1 and y = – 1


If A is a square matrix of order 2 such that A(adj A) = `[(7, 0),(0, 7)]`, then |A| = ______


The matrix A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` is a ______.


If A and B are matrices of same order, then (3A –2B)′ is equal to______.


If two matrices A and B are of the same order, then 2A + B = B + 2A.


Show by an example that for A ≠ O, B ≠ O, AB = O


If A = `[(0,0,0),(0,0,0),(0,1,0)]` then A is ____________.


If the matrix A `= [(5,2,"x"),("y",2,-3),(4, "t",-7)]` is a symmetric matrix, then find the value of x, y and t respectively.


The matrix `[(0,-5,8),(5,0,12),(-8,-12,0)]`  is a ____________.


If A is a square matrix such that A2 = A, then (I + A)2 - 3A is ____________.


`root(3)(4663) + 349` = ? ÷ 21.003


A square matrix B = [bÿ] m × m is said to be a diagonal matrix if all diagonal elements are


A diagonal matrix is said to be a scalar matrix if its diagonal elements are


A = `[a_(ij)]_(m xx n)` is a square matrix, if


The number of all possible matrices of order 3/3, with each entry 0 or 1 is


If 'A' is square matrix, such that A2 = A, then (7 + A)3 = 7A is equal to


Let A be a 2 × 2 real matrix with entries from {0, 1} and |A| ≠ 0. Consider the following two statements:

(P) If A1I2, then |A| = –1

(Q) If |A| = 1, then tr(A) = 2,

where I2 denotes 2 × 2 identity matrix and tr(A) denotes the sum of the diagonal entries of A. Then ______.


If the sides a, b, c of ΔABC satisfy the equation 4x3 – 24x2 + 47x – 30 = 0 and `|(a^2, (s - a)^2, (s - a)^2),((s - b)^2, b^2, (s - b)^2),((s - c)^2, (s - c)^2, c^2)| = p^2/q` where p and q are co-prime and s is semiperimeter of ΔABC, then the value of (p – q) is ______.


If A and B are square matrices of order 3 × 3 and |A| = –1, |B| = 3, then |3AB| equals ______.


Let A = `[(0, -2),(2, 0)]`. If M and N are two matrices given by M = `sum_(k = 1)^10 A^(2k)` and N = `sum_(k = 1)^10 A^(2k - 1)` then MN2 is ______.


Let A and B be 3 × 3 real matrices such that A is symmetric matrix and B is skew-symmetric matrix. Then the systems of linear equations (A2B2 – B2A2)X = O, where X is a 3 × 1 column matrix of unknown variables and O is a 3 × 1 null matrix, has ______.


If A = `[(5, x),(y, 0)]` and A = AT, where AT is the transpose of the matrix A, then ______.


Assertion: Let the matrices A = `((-3, 2),(-5, 4))` and B = `((4, -2),(5, -3))` be such that A100B = BA100

Reason: AB = BA implies AB = BA for all positive integers n.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×