Advertisements
Advertisements
प्रश्न
The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:
`[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`
उत्तर
Let A = `[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`
∴ AT = `[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`
∴ AT = A, i.e., A = AT
∴ A is a symmetric matrix.
APPEARS IN
संबंधित प्रश्न
If A is a square matrix, such that A2=A, then write the value of 7A−(I+A)3, where I is an identity matrix.
Find the value of x, y, and z from the following equation:
`[(x+y, 2),(5+z, xy)] = [(6,2), (5,8)]`
Find the value of x, y, and z from the following equation:
`[(x+y+z), (x+z), (y+z)] = [(9),(5),(7)]`
If 𝒙 = r cos θ and y= r sin θ prove that JJ-1=1.
if `vec"a"= 2hat"i" + 3hat"j"+ hat"k", vec"b" = hat"i" -2hat"j" + hat"k" and vec"c" = -3hat"i" + hat"j" + 2hat"k", "find" [vec"a" vec"b" vec"c"]`
Choose the correct alternative.
The matrix `[(8, 0, 0),(0, 8, 0),(0, 0, 8)]` is _______
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(3, -2, 4),(0, 0, -5),(0, 0, 0)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(0, 4, 7),(-4, 0, -3),(-7, 3, 0)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(10, -15, 27),(-15, 0, sqrt(34)),(27, sqrt(34), 5/3)]`
Find k if the following matrix is singular:
`[(7, 3),(-2, "k")]`
If A = `[(5, 1, -1),(3, 2, 0)]`, Find (AT)T.
If A = `[(7, 3, 1),(-2, -4, 1),(5, 9, 1)]`, Find (AT)T.
Find x, y, z If `[(0, -5"i", x),(y, 0, z),(3/2, -sqrt(2), 0)]` is a skew symmetric matrix.
The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:
`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`
Construct the matrix A = [aij]3 × 3 where aij = i − j. State whether A is symmetric or skew-symmetric.
Answer the following question:
If A = diag [2 –3 –5], B = diag [4 –6 –3] and C = diag [–3 4 1] then find B + C – A
Answer the following question:
If A = diag [2 –3 –5], B = diag [4 –6 –3] and C = diag [–3 4 1] then find 2A + B – 5C
If A = `[(3, 1),(-1, 2)]`, then prove that A2 – 5A + 7I = O, where I is unit matrix of order 2
If two matrices A and B are of the same order, then 2A + B = B + 2A.
Show by an example that for A ≠ O, B ≠ O, AB = O
If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.
2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`
If A = `[(0,0,0),(0,0,0),(0,1,0)]` then A is ____________.
If `[("a","b"),("c", "-a")]`is a square root of the 2 x 2 identity matrix, then a, b, c satisfy the relation ____________.
For any square matrix A, AAT is a ____________.
If a matrix A is both symmetric and skew-symmetric, then ____________.
If A is a square matrix such that A2 = A, then (I + A)2 - 3A is ____________.
If a matrix A is both symmetric and skew symmetric then matrix A is ____________.
`root(3)(4663) + 349` = ? ÷ 21.003
`[(5sqrt(7) + sqrt(7)) + (4sqrt(7) + 8sqrt(7))] - (19)^2` = ?
A diagonal matrix is said to be a scalar matrix if its diagonal elements are
A = `[a_(ij)]_(m xx n)` is a square matrix, if
If 'A' is square matrix, such that A2 = A, then (7 + A)3 = 7A is equal to
A diagonal matrix in which all diagonal elements are same, is called a ______ matrix.
If A and B are square matrices of order 3 × 3 and |A| = –1, |B| = 3, then |3AB| equals ______.
If A = `[(5, x),(y, 0)]` and A = AT, where AT is the transpose of the matrix A, then ______.
If A is a square matrix of order 3, then |2A| is equal to ______.
A matrix which is both symmetric and skew symmetric matrix is a ______.