हिंदी

The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither: [12-52-34-549] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`

योग

उत्तर

Let A = `[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`

∴ AT = `[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`

∴ AT = A, i.e., A = AT

∴ A is a symmetric matrix.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Determinants and Matrices - Exercise 4.4 [पृष्ठ ८३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 4 Determinants and Matrices
Exercise 4.4 | Q 9. (i) | पृष्ठ ८३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If A is a square matrix, such that A2=A, then write the value of 7A(I+A)3, where I is an identity matrix.


Find the value of x, y, and z from the following equation:

`[(x+y, 2),(5+z, xy)] = [(6,2), (5,8)]`


Find the value of x, y, and z from the following equation:

`[(x+y+z), (x+z), (y+z)] = [(9),(5),(7)]`


If 𝒙 = r cos θ and y= r sin θ prove that JJ-1=1.


if  `vec"a"= 2hat"i" + 3hat"j"+ hat"k", vec"b" = hat"i" -2hat"j" + hat"k" and vec"c" = -3hat"i" + hat"j" + 2hat"k", "find" [vec"a" vec"b" vec"c"]`


Choose the correct alternative.

The matrix `[(8, 0, 0),(0, 8, 0),(0, 0, 8)]` is _______


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(3, -2, 4),(0, 0, -5),(0, 0, 0)]`


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(0, 4, 7),(-4, 0, -3),(-7, 3, 0)]`


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(10, -15, 27),(-15, 0, sqrt(34)),(27, sqrt(34), 5/3)]`


Find k if the following matrix is singular:

`[(7, 3),(-2, "k")]`


If A = `[(5, 1, -1),(3, 2, 0)]`, Find (AT)T.


If A = `[(7, 3, 1),(-2, -4, 1),(5, 9, 1)]`, Find (AT)T.


Find x, y, z If `[(0, -5"i", x),(y, 0, z),(3/2, -sqrt(2), 0)]` is a skew symmetric matrix.


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`


Construct the matrix A = [aij]3 × 3 where aij = i − j. State whether A is symmetric or skew-symmetric.


Answer the following question:

If A = diag [2 –3 –5], B = diag [4 –6 –3] and C = diag [–3 4 1] then find B + C – A


Answer the following question:

If A = diag [2 –3 –5], B = diag [4 –6 –3] and C = diag [–3 4 1] then find 2A + B – 5C


If A = `[(3, 1),(-1, 2)]`, then prove that A2 – 5A + 7I = O, where I is unit matrix of order 2


If two matrices A and B are of the same order, then 2A + B = B + 2A.


Show by an example that for A ≠ O, B ≠ O, AB = O


If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.

2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`


If A = `[(0,0,0),(0,0,0),(0,1,0)]` then A is ____________.


If `[("a","b"),("c", "-a")]`is a square root of the 2 x 2 identity matrix, then a, b, c satisfy the relation ____________.


For any square matrix A, AAT is a ____________.


If a matrix A is both symmetric and skew-symmetric, then ____________.


If A is a square matrix such that A2 = A, then (I + A)2 - 3A is ____________.


If a matrix A is both symmetric and skew symmetric then matrix A is ____________.


`root(3)(4663) + 349` = ? ÷ 21.003


`[(5sqrt(7) + sqrt(7)) + (4sqrt(7) + 8sqrt(7))] - (19)^2` = ?


A diagonal matrix is said to be a scalar matrix if its diagonal elements are


A = `[a_(ij)]_(m xx n)` is a square matrix, if


If 'A' is square matrix, such that A2 = A, then (7 + A)3 = 7A is equal to


A diagonal matrix in which all diagonal elements are same, is called a ______ matrix.


If A and B are square matrices of order 3 × 3 and |A| = –1, |B| = 3, then |3AB| equals ______.


If A = `[(5, x),(y, 0)]` and A = AT, where AT is the transpose of the matrix A, then ______.


If A is a square matrix of order 3, then |2A| is equal to ______.


A matrix which is both symmetric and skew symmetric matrix is a ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×